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Samenvatting

Robots worden traditioneel toegepast in fabrieksomgevingen, waar ze repetitief
werk verrichten met hoge precisie en snelheid. Robots die specifiek voor dit soort
werk ontworpen zijn hebben een stijve constructie en krachtige motoren, wat ze in-
herent gevaarlijk maakt. Daarom zijn deze robots zorgvuldig afgeschermd van de
arbeiders, om ongelukken door botsingen te voorkomen. Echter, recente ontwikke-
lingen in robotica onderzoek en ontwikkeling gaan in de richting van mens-robot
interactie en samenwerking. Om robots uit de gestructureerde fabrieksomgeving
naar dynamische en veranderlijke omgevingen te krijgen moeten robots aan nieuwe
criteria voldoen op het gebied van veiligheid en interactie.

Actuatoren met variabele stijfheid worden gekarakteriseerd door de eigenschap
dat zij hun uitgangsstijfheid kunnen variëren, onafhankelijk van de positie van
de uitgang. Dit wordt in het algemeen gerealiseerd door een aantal elastische
elementen op te nemen in het ontwerp van de actuator, tezamen met een aantal
interne vrijheidsgraden die bepalen hoe deze elastische elementen aan de uitgang
van de actuator worden waargenomen. Een dergelijke regelbare stijfheid stelt een
robot uitgerust met deze actuatoren in staat om zijn impedantie mechanisch te
regelen, en op deze manier kan een veilige interactie met onbekende omgevingen
mechanisch gegarandeerd worden. Bovendien biedt de aanwezigheid van de elasti-
sche elementen een manier om tijdelijk mechanische energie op te slaan, wat nieuwe
mogelijkheden biedt voor energie-efficiënte actuatie.

Deze dissertatie verkent het ontwerpen en toepassen van actuatoren met vari-
abele stijfheid, met in het bijzonder aandacht voor het energetische gedrag van de
actuator tijdens interactie met de omgeving. Voor dit doeleinde wordt een gene-
riek, poort-gebaseerd model gepresenteerd, waarmee de vermogensstromen tussen
de interne vrijheidsgraden en de interne elastische elementen, alsook de omgeving,
geanalyseerd kunnen worden. Deze analysemethode wordt gebruikt om de ener-
getische presentaties van diverse ontwerpen van actuatoren met variabele stijfheid
te vergelijken door deze ontwerpen te categoriseren op basis van hun werkingsprin-
cipes.

Op basis van het poort-gebaseerde model en de analyse van de vermogens-
stromen worden nieuwe regeltechnieken voorgesteld, met als doel het realiseren
van energie-efficiënte actuatie van periodieke bewegingen, door middel van het
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gebruik van de interne elastische elementen voor tijdelijke opslag van mechanische
energie. De eerste regelmethode slaat energie, toegevoerd via externe verstoringen,
op als elastische energie in de interne elastische elementen, en tracht deze energie
te hergebruiken voor het compenseren van de verstoring. De tweede methode
daarentegen is gebaseerd op resonantie, en tracht het gewenste periodieke gedrag
in te bedden in de passieve dynamica van de actuator met variabele stijfheid.

Als laatste wordt de toepassing van actuatie met variabele stijfheid op voort-
bewegingstechnieken verkend. Er wordt aangetoond dat een variabele stijfheid in
de benen van een tweebenige looprobot gunstig is voor de robuustheid van het
looppatroon, terwijl tegelijkertijd energie-efficiënte voortbeweging gerealiseerd kan
worden. Een regelalgoritme wordt voorgesteld dat deze principes demonstreert in
een generiek model van een tweebenige looprobot.



Summary

Traditionally, robots have been employed in factory environments, performing
repetitive tasks with high precision at high speeds. Robots designed for this pur-
pose are characterized by rigid links and powerful motors, making them inherently
dangerous. As such, these robots are carefully separated from human workers, to
prevent accidental collisions. However, in recent years a trend towards human-robot
interaction and cooperation can be observed in robotics research and development.
Taking robots out of the well-defined factory environments into unknown and dy-
namically changing environments imposes new requirements on robots in terms of
safety and interaction control.

Variable stiffness actuators are characterized by the property that their ap-
parent output stiffness can be changed independently from the actuator position.
This is generally achieved by incorporating a number of elastic elements internal
to the actuator design, together with a number of internal degrees of freedom that
determine how these elastic elements are perceived at the actuator output. This
controllable output stiffness enables a robot equipped with these actuators to me-
chanically control its impedance, thus providing a way to mechanically ensure safe
interaction with unknown environments. Moreover, the presence of internal elastic
elements introduces a way to temporarily store mechanical energy, opening up new
possibilities for energy-efficient actuation.

This thesis explores the design and application of variable stiffness actuators,
focussing in particular on the energetic behavior of the actuators interacting with
the environment. For this purpose, a generic port-based model is presented, that
allows the analysis of the power flows between the internal degrees of freedom and
the internal elastic elements of the actuator, and its environment. This power flow
analysis method is used to compare the energetic performance of various variable
stiffness actuator designs, on the basis of a categorizing of their working principles.

Using the port-based model and the power flow analysis, new control meth-
ods are proposed, with the aim of realizing energy-efficient actuation of periodic
motions by using the internal elastic elements to temporarily store mechanical en-
ergy. The first control method purposefully stores energy, supplied by external
disturbances, as elastic energy in the internal elastic elements and aims to reuse
this energy to reject the disturbance. The second control method instead takes a
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resonance-based approach, in which the desired oscillatory behavior is embodied
in the passive dynamics of the variable stiffness actuator.

Finally, the application of variable stiffness actuation to locomotion is inves-
tigated. It is shown that a variable compliance in the legs of bipedal walkers
can be beneficial to the robustness of the gaits, while achieving at the same time
energy-efficient locomotion. A control strategy is presented, that demonstrates
these principles in a template model of a bipedal walker.



Contents

1 Introduction 1
1.1 Conventional Actuation Principles 2
1.2 Variable Stiffness Actuators 3
1.3 About this Thesis 4

I Dissertation 7

2 Variable Stiffness Actuators 9
2.1 Origin and Background 9
2.2 Working Principles 11

3 Modeling and Analysis of Variable Stiffness Actuators 17
3.1 A Port-based Model 17
3.2 Power Flow Analysis 20
3.3 Measuring Energy Efficiency 24

4 Energy-based Control Strategies 27
4.1 Control of Power Flows 27
4.2 Embodying Desired Behavior 31

5 Application to Bipedal Walking 35
5.1 Bipedal Walking with Compliant Legs 35
5.2 Gait Control using Variable Leg Stiffness 37
5.3 Influence of Swing Leg Dynamics 39
5.4 Cost of Transport 43

6 Conclusions 45
6.1 Discussion and Conclusions 45
6.2 Recommendations for Future Work 47



vi

II Selected Papers 49

7 Energy-Efficient Variable Stiffness Actuators 51
7.1 Introduction 51
7.2 Motivation 52
7.3 Port-based Modeling Framework 53
7.4 Variable Stiffness Actuators as Port-Hamiltonian Systems 56
7.5 Kinematic Properties of Energy Efficient Variable Stiffness Actuators 62
7.6 Design of an Energy Efficient Variable Stiffness Actuator 64
7.7 Simulation and Experiments 68
7.8 Discussion 72
7.9 Conclusions 73

8 Variable Stiffness Actuators: a Port-based Power Flow Analysis 75
8.1 Introduction 75
8.2 Port-based Modeling Framework 77
8.3 Port-based Model of Variable Stiffness Actuators 80
8.4 Power Flow Analysis 83
8.5 Analysis of Conceptual Variable Stiffness Actuator Designs 88
8.6 Conclusions 96

9 Energy-Efficient Control of Robots with Variable Stiffness Actuators 99
9.1 Introduction 99
9.2 Port-based Modeling of Variable Stiffness Actuators 100
9.3 Energy Efficient Control 103
9.4 Simulation Results 108
9.5 Conclusions and Future Work 110

10 Embodying Desired Behavior in Variable Stiffness Actuators 113
10.1 Introduction 113
10.2 Generalized Behavior of Variable Stiffness Actuators 114
10.3 Problem Formulation 118
10.4 Nominal Solution 119
10.5 Optimization 121
10.6 Examples 122
10.7 Conclusions and Future Work 125

11 Energy-Efficient Bipedal Locomotion using Variable Stiffness Actuation 127
11.1 Introduction 127
11.2 The Bipedal SLIP Model 129
11.3 The Controlled V-SLIP Model 131
11.4 The Controlled V-SLIP Model with Swing Leg Dynamics 135
11.5 The Controlled V-SLIP model with Retracting Swing Leg Dynamics 143
11.6 Comparison by Numerical Simulation 148
11.7 Conclusions 150



vii

III Appendix 155

A Controller Design for a Bipedal Walking Robot using Variable Stiffness
Actuators 157
A.1 Introduction 157
A.2 V-SLIP Model and Controller 158
A.3 V-SLIP Model with Knees and Controller 160
A.4 Robot Model and Controller 162
A.5 Integrated Control Architecture 164
A.6 Simulation Results 165
A.7 Experimental Results 166
A.8 Conclusions and Future Work 168

B Description of the Robot Design 171
B.1 Design Requirements 171
B.2 Mechanical Realization 172
B.3 Electronics and Software 174
B.4 Recommendations for Improvements 175





CHAPTER 1

Introduction

Traditionally, the main application area for robots has been the manufacturing in-
dustry, where robots perform repetitive tasks with high precision. A good example
can be found in car factories, such as shown in Figure 1.1, where industrial robots
are used to perform high-precision welding tasks. Such tasks are performed by
executing a sequence of predefined motions in a structured environment, without
any human intervention. In fact, because these robots are not aware of their en-
vironment, their working area is strictly separated from the rest of the factory, to
protect human workers from being injured.

Recently, robots are being developed that can work together with humans and
cooperate with them. Such robots must meet very different requirements than
robots that operate in factory environments. In particular, when robots operate
a dynamically changing environment where humans are also present, the most
important requirement for such robots is that they are safe, both towards human
and robot [72]. This, in turn, requires that these robots need to be adaptable,
so that they can safely interact with environments with varying properties and
characteristics [5, 1].

Furthermore, many use-cases of human-robot interaction and cooperation re-
quire that the robot is mobile. In contrast with the mostly immobile factory robots,
this requirement introduces new challenges in energy efficiency. In particular, robot
locomotion should be highly energy-efficient in order to be able to use on-board
energy storage as much as possible for interaction and cooperation tasks. While
prevalent wheeled platforms provide an energy efficient way of locomotion, they
are generally not well suited for human environments where steps, stairs, and un-
even surfaces are commonly encountered. Legged robots are much more suitable
for such environments, but energy-efficient and robust legged locomotion is still an
unsolved problem [48].
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Figure 1.1: ABB IRB 6400 robots spot-welding car frames—Robots are commonly used in facto-
ries, where they perform repetitive tasks with high precision at high speed. However, due to their
size and operating speed, and their lack of environmental awareness, such robots are extremely
unsafe. As such, these manufacturing lines are carefully shielded off from the rest of the factory
to prevent accidental collisions. Image source: abb.com

One aspect of addressing intrinsic safety and energy efficiency is robot actua-
tion, since the dynamic properties of the actuation systems of a robot contribute
significantly to the overall dynamics. Safe and energy-efficient robots can be real-
ized only if the actuation system can be made intrinsically safe and energy efficient.

1.1 Conventional Actuation Principles

The repetitive and high-precision nature of factory tasks has resulted in the design
of highly specialized robots, with “stiff actuation” to achieve the required levels
of accuracy. Here, “stiff actuation” means that the combination of the motor and
motor control result in a joint that appears to be stiff, i.e. when disturbed, the
joint motion deviates very little from the desired motion. This stiffness is achieved
in a number of ways. In the first place, the mechanical structure of the robot is
designed to be as stiff as possible, with the aim of preventing undesired vibrations
to propagate through the system. Secondly, high-performance electromechanical
motors with high-gain controllers are used to accurately control the joint motion.

The result of these design principles is a robot that can accurately track specified
joint trajectories, such that precision tasks can be performed at high speeds. This
facilitates high-quality, high-throughput production lines, which are essential to
manufacturing industries. However, a side effect is that, due to the stiff structures



3

and control combined with high-speed motion, that these robots are unsafe. The
lack of safety is due to the high levels of kinetic energy associated with the fast
motions of the robot, which will be released upon impact. As a result, robotic
production lines are shielded off from the rest of the factory, with the aim of
preventing accidental collisions.

If robots are to operate in an environment together with humans, safety is a
high priority. It cannot be assumed that accidental collisions can be prevented by
means of sensors, as this would require large amounts of computational resources,
and redundant sensors would be required to safeguard against sensor failure. In-
stead, an intrinsic level of safety is preferred by designing the robot such that it
is mechanically safe even in the absence of sensory feedback and control action.
This can be partly achieved by using lightweight materials and more compliant
mechanical structures, but this cannot overcome the intrinsic stiffness of conven-
tional electromechanical actuators. For example, a DC-motor with a motor inertia
J and a gearbox transmission ratio 1 : n adds a reflected inertia of n2 · J to the
joint that the motor is actuating. With gearbox ratios in the order of 1 : 100, the
reflected inertia contributes significantly to the total robot inertia. This effect can
be partly mitigated by using direct-drive motors, but such motors need to be much
larger in order to achieve the same level of performance of geared motors.

A second drawback of conventional electromechanical actuators is their poor en-
ergy efficiency. While motors and gearboxes by themselves are getting increasingly
more efficient, dissipation of electrical energy cannot be avoided. Furthermore,
electrical motors are inherently inefficient when negative work is done. Especially
the automotive industry is directing efforts towards enabling back-drivable motors
to convert mechanical energy back to electrical energy, but the conversion of en-
ergy from the mechanical domain to the electrical domain will always be inherently
inefficient. To enable the deployment of safe and energy efficient robots in human
environments, these issues need to be addressed.

1.2 Variable Stiffness Actuators

New actuation principles are being developed by the robotics community, which
aim to reach levels of performance in actuation that match or exceed human perfor-
mance. Examples include torque-feedback systems [1], artificial muscles [63], and
series-elastic actuation [73]. Many of these new principles introduce an intrinsic
compliance to the actuation system, which is believed to be a necessary requirement
for safe interaction [4], and also allows to mechanically store energy for increasing
energy efficiency [52]. However, introducing compliance will result in decreased
accuracy, which might be problematic for some tasks. Yet, the added compliance
renders robots intrinsically safe and opens possibilities for energy-efficient actu-
ation based on resonance principles [56]. Therefore, research efforts have been
directed towards combining the advantages of both conventional electromechanical
actuators and those of compliant actuators.
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Figure 1.2: The working principle of variable stiffness actuators—The equilibrium position x1 is
controlled by a conventional actuator, that is connected to the load m by a spring with controllable
stiffness k.

To negotiate the trade-off between compliancy and accuracy, the concept of
variable stiffness actuation has been introduced [5]. This principle introduces a
compliant element with controllable stiffness in between a conventional electrome-
chanical actuator and the joint that is being actuated, as illustrated in Figure 1.2.
A variable stiffness actuator thus has two controlled degrees of freedom: the equi-
librium position x1 and the stiffness k. The dynamics of the load m are those of a
spring-mass system with a variable stiffness:

mẍ2(t) = k(t) (x1(t)− x2(t)) .

Variable stiffness actuators allow to balance between compliant and stiff actu-
ation, depending on the task at hand. In particular applications the stiffness can
be tuned to realize specific interaction behavior with an unknown environment,
or to realize resonance frequencies for energy-efficient actuation of periodic mo-
tions. For example, analogously to human capabilities, a robotic walker equipped
with variable stiffness actuators can tune its leg stiffness to achieve energy-efficient
locomotion on even terrain, or improve robustness on uneven terrain. Therefore,
variable stiffness actuators are essential to new robotic applications in human-robot
interaction and cooperation.

1.3 About this Thesis

The focus of this thesis is on modeling and control of variable stiffness actuators,
as well as their application to compliant bipedal walking. The thesis is split in two
parts: the first part aims to provide a complete overview of the obtained results
in the form of a short dissertation, while the second part provides a selection of
papers that are at the basis of these results, providing more details on particular
aspects of the work.

Within the first part, Chapter 2 presents an overview of variable stiffness ac-
tuator designs, and a classification of working principles is established. This clas-
sification is instrumental in understanding the capabilities and performance limits
of various designs. In Chapter 3, a generic model for variable stiffness actuators is
presented, based on a port-based modeling framework. With this model, the power
flows within a variable stiffness actuator can be investigated, giving insight in the



5

energy exchange between the actuator and its environment. Based on these in-
sights, a metric for energy efficiency can be established, which is further elaborated
for the previously identified working principles. The port-based model is the basis
for a number of novel control methods, presented in Chapter 4. These methods
exploit the energy-storing capabilities of the internal compliant elements of variable
stiffness actuators, thus arriving at energy-efficient control. Chapter 5 investigates
the application of variable stiffness actuation to bipedal locomotion. Starting from
a conceptual model for human walking, it is shown how variable stiffness actua-
tion can be used to improves robustness and realize energy-efficient walking robots.
Finally, Chapter 6 presents a discussion of the results, and recommendations for
future work.

1.3.1 The VIACTORS Project

The work presented in this thesis has been conducted in the context of the Euro-
pean project viactors, an acronym for “Variable Impedance ACTuation systems
embodying advanced interaction behaviORS” (http://www.viactors.org). The
goal of this project has been to develop new actuation principles for robots to safely
coexist and cooperate with humans. In particular, the project aimed to investi-
gate how human performance levels can be achieved in terms of manipulation and
locomotion, while at the same time be energy efficient and inherently safe.

Within the project, the premise is that these goals can be achieved by devel-
oping variable impedance actuators, which allow generic control of interaction with
the environment by modifying the actuator impedance to match the expected envi-
ronment. Variable stiffness actuators are a subset of variable impedance actuators,
since they only allow the actuator stiffness to be adjusted. This thesis shows how
variable stiffness actuators can be used to achieve the project goals. In particular,
it is shown how these actuators can realize energy-efficient actuation by exploiting
the energy-storing capabilities of the internal elastic elements. Furthermore, it is
shown that variable stiffness actuators can be employed to mimic human capabil-
ities in locomotion, realizing robust and energy-efficient locomotion by regulation
of leg stiffness.

1.3.2 Overview of Publications

A number of publications in international conferences and journals have lead up to
the results presented in this thesis. A few of these publications are included in the
second part of this thesis:

• Chapter 7: “Energy-Efficient Variable Stiffness Actuators”, published in:
IEEE Transactions on Robotics, 2011.

• Chapter 8: “Variable Stiffness Actuators: a Port-based Power Flow Analy-
sis”, published in: IEEE Transactions on Robotics, 2012.
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• Chapter 9: “Energy-Efficient Control of Robots with Variable Stiffness Actu-
ators”, published in: Proceedings of the 8th IFAC Symposium on Nonlinear
Control Systems, 2010.

• Chapter 10: “Embodying Desired Behavior in Variable Stiffness Actuators”,
published in: Proceedings of the 18th IFAC World Congress, 2011.

• Chapter 11: “Energy-Efficient Bipedal Locomotion using Variable Stiffness
Actuation”, submitted to: IEEE Transactions on Robotics, 2013.

A complete overview of all publications can be found in the bibliography.



Part I

Dissertation





CHAPTER 2

Variable Stiffness Actuators

The defining characteristic of variable stiffness actuators is that this class of ac-
tuators is capable of varying the apparent output stiffness independently of the
actuator output position. This allows to control the interaction forces between the
robot and the environment, which is an essential ability for robots operating in an
unknown environment. In particular, when interaction forces and impedance can
be controlled, interaction with the environment can be rendered safe and stable,
even in unknown conditions.

This chapter provides a background in the emergence of variable stiffness actua-
tors. Furthermore, an overview of working principles for variable stiffness actuator
is presented. These designs can be classified to establish a set of conceptual working
principles, that lie at the basis of these designs. This classification is instrumental
in understanding the actuator designs and in evaluating their performance.

2.1 Origin and Background

Initially, robots have most often been position-controlled, such as the spot-welding
robots depicted in Figure 1.1. This is sufficient as long as the joint trajectories of
the robot are known in advance, which is generally the case in production lines.
The development of high-resolution position sensors, such as encoders, has fur-
ther facilitated the development of the high-speed, high-precision robots that are
required in modern manufacturing industry.

However, there are many applications in which position control does not suffice.
In particular, when a robot needs to physically interact with the environment,
position control of the end-effector, e.g. a tool, can result in unstable behavior. For
example, consider a robot with a sanding tool that needs to smoothen a particular
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surface of an object. Let the joint configuration of the robot be denoted by q(t),
and assume that these quantities can be accurately measured by position sensors.
Let qd(t) be predefined desired joint trajectories, designed such that the sanding
tool follows a specific trajectory in Cartesian space. A commonly used control
strategy is to calculate joint torques τ using a proportional-integral-differential
(PID) control law, i.e.

τ = Kp(qd(t)− q(t)) +Ki

�
(qd(t)− q(t)) dt+Kd

d

dt
(qd(t)− q(t)),

where Kp,Ki,Kd are positive-definite diagonal gain matrices. Assuming that the
time derivative of q(t) is available, it can be readily shown that applying this torque
to the joint will result in the error qd(t) − q(t) converging to zero, and thus that
the tool tracks the intended trajectory in Cartesian space.

However, in this scenario, the surface to be sanded is inherently unknown. A
static error qd(t)− q(t), due to the fact that the sanding tool cannot move through
the surface to be sanded, might result in excessively high torques τ . Furthermore,
when this control law is discretized to be implemented on a computer, such sce-
narios can easily lead to instability. This can be avoided by employing a different
technique called force control [77]. In this approach, instead of defining the po-
sition trajectory for the tool, a desired interaction force is defined. In this way,
when the tool is in contact with the environment, no instability will occur when
this contact point deviates from the intended tool position. In the context of the
sanding example, the sanding tool will apply a suitable force to the surface to be
sanded, even when the surface is uneven.

Force control can be realized similar to position control, replacing position sen-
sors by force sensors, and implementing a feedback control law in software. How-
ever, this approach suffers from two drawbacks. First, force sensors are expensive
and subject to noise. Furthermore, the bandwidth of a digitally implemented
controlled inherently has a limited bandwidth, bounded by the sample rate of
the analog-to-digital converters. While the bandwidth limitation is of course also
present in position control, high-frequency contact dynamics that are observed in
scenarios where force control would be beneficial, can pose serious problems when
control bandwidth is limited.

To overcome the issues with force sensors, series elastics actuators, which use
an internal spring as force sensor, have been proposed [73]. The working principle
is depicted in Figure 2.1, and is based on Hooke’s Law, which states that the force
exerted on by a spring is proportional to its elongation, i.e. F = k(x1 − x2). Since
accurate position measurements can be obtained through relatively cheap sensors,
the spring can be used as a force sensing device by measuring the position of both
of its end points. In a series elastics actuator, one of the end points of the spring is
attached to a conventional, position-controlled actuator, and the other end point
connected to e.g. a robotic joint. The name thus originates from the spring (i.e.
an elastic element) placed in series with a conventional actuator. In this way, the
desired force to be applied to the joint can be realized by a conventional actuator
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Figure 2.1: The working principle of series elastic actuation—The equilibrium position x1 is
controlled by a conventional actuator, that is connected to the load, consisting of a mass m, by
a spring with stiffness k. In this way the load is decoupled from the actuator inertia.

and position measurements.
The main advantage of series elastics actuation over software-implemented force

control is that the internal elastic element realizes a mechanical compliance, rather
than a software-emulated compliance. This circumvents the bandwidth prob-
lem in physical interaction scenarios, since the spring realizes a physical actu-
ator impedance suitable for interaction with stiff environments. However, this
impedance is constant, which implies that a robot equipped with series elastics ac-
tuators will need to be designed keeping in mind the properties of the environment
it will be operating in. If the robot is to operate in a wide variety of environ-
ments with different properties, it might not be possible to find a fixed actuator
impedance that is suitable for all scenarios. This is were variable stiffness actuators
offer a solution.

As shown in Figure 1.2, the working principle of variable stiffness actuators is
very similar to that of series elastics actuators. The essential difference is that in
variable stiffness actuators the apparent elasticity of the compliant element, i.e.
how it is perceived by the load at the actuator output, can be varied as desired.
This allows a robot to adapt itself to its environment, much like humans do. For
example, a robot operating in a largely unknown environment should be compliant,
so that unexpected impacts can be absorbed by the mechanical impedance. In
contrast, a robot performing a high-precision task needs to present a high stiffness
impedance, so that desired levels of accuracy may be achieved.

It is clear why variable stiffness actuators can be advantageous in certain ap-
plications. Translating the concept shown in Figure 1.2 to a physical realization
can be done in many ways, each with specific advantages and disadvantages. The
focus of the remainder of this chapter will be on different working principles for
the realization of variable stiffness actuators and the properties of these principles.

2.2 Working Principles

Any variable stiffness actuator needs to have one or more internal compliant el-
ements, and one or more internal degrees of freedom that determine how these
compliant elements are perceived at the actuator output. Furthermore, one or
more actuated degrees of freedom are needed to control the equilibrium position of
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Figure 2.2: Variable stiffness actuation using antagonistic springs—The working principle consists
of two springs with a nonlinear force-displacement relation, placed in an antagonistic configura-
tion. The apparent output stiffness can be modulated by pretension of the springs, while the
equilibrium position can be changed by operating the two actuators in differential mode.

the actuator, analogous to the equilibrium position of a spring. These degrees of
freedom and compliant elements can be organized in many ways, but it is possible
to classify most of the designs in three categories, corresponding to elementary
working principles.

2.2.1 Antagonistic Spring Setup

Humans are capable of varying for example the stiffness of their elbow by co-
contraction of biceps and triceps. In general, by co-contraction of antagonistic
muscle pairs the stiffness of corresponding joints can be adjusted to suit a partic-
ular task. This can be emulated in a variable stiffness actuator as illustrated in
Figure 2.2. In this design principle, two nonlinear springs are on one end connected
to a pulley, and each of the other ends is connected to an actuated linear degree of
freedom, denoted by qi, i = 1, 2. The angle θ of the pulley is considered the output
motion of the variable stiffness actuator, with the actuator torque τ collocated with
output angle θ.

If the pulley has radius R, then the torque τ is given by

τ = R(F2 − F1),

where Fi is the force exerted by the springs. The torsional stiffness σ perceived at
the output is given by1

σ =
∂τ

∂θ
= R

�
∂F2

∂θ
− ∂F1

∂θ

�
.

1By convention, stiffness is always a positive quantity, even if evaluating the partial derivative
∂τ/∂θ yields a negative value.
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Assuming that the force generated by the spring springs is quadratic2 in the spring
elongation, i.e.

F1 = k(q1 +Rθ)2 and F2 = k(q2 −Rθ)2,

where k is a constant of elasticity, the generated output torque is given by:

τ = R
�
k(q2 −Rθ)2 − k(q1 +Rθ)2

�

= Rk
�
q22 − q21 − 2R(q1 + q2)θ

�
.

From this, it is observed that the torsional output stiffness σ = 2R2k(q1 + q2) can
be adjusted by operating the two internal degrees of freedom in common mode,
analogously to muscle co-contraction. The equilibrium position of the actuator can
be changed by operating the two internal degrees of freedom in differential mode,
i.e. by keeping q1 − q2 constant.

This biologically inspired approach is at the basis of the designs presented in
e.g. [33, 54, 46]. Its main advantages are the intuitive design and the simple
construction principle. The main drawbacks are that the range of output stiffness
that can be achieved is proportional to the operating range of the internal degrees of
freedom qi. Furthermore, if the stiffness is increased, work is converted in potential
energy stored in the springs. This energy is essentially “locked up”, and cannot be
used to do useful work at the output. This last point will be further elaborated in
Chapter 3.

2.2.2 Pretension Mechanisms

In the antagonistic spring setup, both internal degrees of freedom are used equiva-
lently to vary the apparent output stiffness and to change the equilibrium position
of the actuator. This means that, if for a particular set of design requirements it is
needed to vary the stiffness over only a small range, while the equilibrium position
needs to be varied over a large range, both internal degrees of freedom need to
have a large range of motion to accommodate both requirements. This drawback
can be overcome by decoupling stiffness control and equilibrium position control,
as conceptually shown in Figure 2.3.

In this working principle, which is at the basis of the designs presented in
[60, 75, 61, 18, 74], the linear degree of freedom q1 controls the pretension of the
nonlinear springs, while the rotational degree of freedom q2, in between the pulley
and the actuator output, controls the equilibrium position of the actuator. As in
the previous design, the output is the angle θ, with collocated torque τ .

Letting R denote again the radius of the pulley, the torque τ can be calculated
as

τ = R(F2 − F1),

2Taking linear springs, i.e. in which the generated force is of the form Fi = k(q±Rθ), renders
∂F/∂θ constant, leaving no way to influence the apparent output stiffness by means of control of
the internal degrees of freedom.
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Figure 2.3: Variable stiffness actuation using a pretension mechanism—The working principle
consists of two springs with a nonlinear force-displacement relation, with a conventional actuator
modulating the pretension of these springs, thus modulating the apparent output stiffness. The
equilibrium position can be changed by a separate actuator in series with the rotation axis of the
pulley.

with, assuming again springs with a quadratic force-displacement relation, the
forces given by:

F1 = k (q1 +R(θ − q2))
2 and F2 = k (q1 −R(θ − q2))

2 .

Substitution then yields
τ = −4R2kq1(θ − q2),

from which the perceived torsional output stiffness σ is calculated as

σ =
∂τ

∂θ
= 4R2kq1.

This shows indeed that only the degree of freedom q1 is used to adjust the apparent
output stiffness. In this way, specific requirements for the range of stiffness and
the range of motion of the actuator can be met by using adequate motors for the
actuation of the corresponding degrees of freedom. However, this design still suffers
from “locked up” energy.

2.2.3 Variable Transmission Ratio

Instead of changing the apparent actuator output stiffness by modifying the state
of the internal springs, as is done in the previous two designs, the apparent stiffness
can also be changed by introducing a variable transmission ratio between the inter-
nal spring element and the actuator output, thus avoiding the potential “lock-up”
of energy. This concept is shown in Figure 2.4, and is essentially an evolution of
the series elastics actuation principle shown in Figure 2.1.
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Figure 2.4: Variable stiffness actuation using a variable transmission—The controllable transmis-
sion ratio determines how the linear spring is perceived at the actuator output. The internal
degree of freedom q1 only controls the transmission ratio. The second degree of freedom q2 is
used to control the equilibrium position of the actuator.

The concept uses a variable transmission, of which the transmission ratio is
controlled by the internal degree of freedom q1, to modulate the apparent actuator
output stiffness. As in the previous design, the internal degree of freedom q2 is
used to control the equilibrium position of the actuator output. The output angle
θ is again collocated with the torque τ .

Assuming a spring abiding Hooke’s Law, i.e. a linear spring, exerting a force
F = ks, where k is the constant of elasticity and s = s(q2, θ) is the elongation of
the internal spring. Assuming that the pulley has unity radius and simplifying the
implementation of the transmission ratio to a linear dependence on q1, the output
torque τ is calculated as

τ = q1ks.

We then obtain the torsional output stiffness as:

σ =
∂τ

∂θ
= q1k

∂s

∂θ
.

This shows that the apparent output stiffness can be manipulated by proper control
of the internal degree of freedom q1.

The concept of a spring in series with a continuously variable transmission was
explored in [52, 51], with the aim of energy efficient actuation. The work presented
in [68, 67] first applied the concept to the realization of energy efficient variable
stiffness actuators. The mechanical advantages of this approach were simultane-
ously and independently recognized in [34, 39], and more recently in [35, 71, 26].
Chapter 3 further explores the energetic properties of this concept.

2.2.4 Other Design Principles

Some variable stiffness actuator designs cannot be captured by the concepts de-
scribed in this chapter. For example, the “Jack Spring”TM presented in [32] varies
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the number of active coils of a spring to vary its stiffness. The design presented in
[9] controls the apparent actuator stiffness by changing the configuration of a set
of permanent magnets inside the actuator.

The list of designs mentioned in this chapter is therefore not exhaustive. How-
ever, it is considered complete enough for the purpose of the work presented in
this thesis. In particular, the design principles presented in this chapter provide
a basis for deriving a generic model for variable stiffness actuators, which will be
elaborated in Chapter 3.



CHAPTER 3

Modeling and Analysis of Variable Stiffness

Actuators

The previous chapter presented a number of working principles for variable stiffness
actuators. However, this categorization is not yet sufficient to compare different
actuator designs. In particular, it is desired that a uniform model is developed,
that can be used to capture the properties of a wide variety of variable stiffness
actuators in a uniform way.

This chapter presents a generic port-based model for variable stiffness actuators.
The port-based approach enables an analysis of performance from an energetic
viewpoint, showing how power flows between the variable stiffness actuator and
the environment. In particular, using this model, a metric for energy efficiency
is established, which allows to better evaluate the performance of the different
variable stiffness actuator working principles.

3.1 A Port-based Model

The port-based approach focusses on power exchange between interconnected sub-
systems. Therefore, port-based modeling is a powerful way of modeling physical
systems from an energetic point of view [14, 50, 19]. Chapter 7 provides an in-depth
treatment of port-based modeling for variable stiffness actuators. Here the main
results and the application of the model to energy efficiency analysis are presented.

Assumption 3.1 In deriving a generic model for variable stiffness actuators, it is
assumed that

• the actuator has one degree of freedom output motion, its configuration de-
noted by the generalized coordinate r;



18
5

C
..

He(s)
D

eS

fS

eC fC

eI

fI
LOAD

Fig. 5. Generalized model of a variable stiffness actuator - The D is the Dirac
structure, the internal elastic elements are represented by the multidimensional
C-element, described by the energy function He(s). The internal degrees of
freedom are actuated via the control port (fC , eC), while the interconnection
with the load is via the output port (fI , eI).

can be represented in a matrix expression as



fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 C(q, r)
−BT (q, r) −CT (q, r) 0





� �� �
D(q,r)




eS
fC
fI



 (15)

where the skew-symmetric matrixD(q, r) represents the Dirac
structure D. Note that the Dirac structure may depend on the
configuration variables q and r, but this is not necessary.
The sub-matrix A(q, r) defines the relation between the

rate of change of the configuration of the internal degrees of
freedom q and the rate of change of the state s of the elastic
elements. Similarly, the sub-matrix B(q, r) defines the relation
between the rate of change of the output position r and the rate
of change of the state s of the elastic elements. In particular, if
the state s is determined by the configuration q of the internal
degrees of freedom and the actuator output position r via the
kinematic relation

λ : (q, r) �→ s (16)

then, by using (10), it follows that

A(q, r) :=
∂λ

∂q
(q, r), B(q, r) :=

∂λ

∂r
(q, r) (17)

The sub-matrix C(q, r) defines a gyration effect between
forces and velocities. However, such a gyration effect does
not exist in the mechanical domain and, without loss of
generality, it is assumed C(q, r) = 0. This implies that the
Dirac structure (15) becomes




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (18)

Observe that the skew-symmetry of the matrix D(q, r) is a
necessary condition for power continuity, as stated in (2)

�
eS fC fI

�



fS
eC
eI



 = 0 ⇔ D(q, r) = −DT (q, r)

As a result, via the matrices A(q, r) and B(q, r) the dual
relations between the forces exerted by the internal elastic
elements and the forces acting on the internal degrees of
freedom and the output are defined.

C
..

He(s)
D I

..

Hp(p)

eS

fS

eC fC

eI

fI

Fig. 6. Generalized model of a variable stiffness actuator with a load - The
internal elastic elements are represented by the multidimensional C-element,
described by the energy function He(s). The internal degrees of freedom are
actuated via the control port (fC , eC), while the interconnection with the
load is via the output port (fI , eI). The I-element represents the load with
kinetic energy function Hp(p), i.e., it models the inertial properties.

From (18), the rate of change of the energy is

dHe

dt
(s) = �∂He

∂s
|ṡ�

= �eS |fS�
= eTS

�
A(q, r)fC +B(q, r)fI

�

= −eTCfC − eTI fI

Indeed, the rate of change of energy is determined by the
power supplied via the control port and the output port, as
stated in (6).

C. Variable Stiffness Actuator and a Load

To investigate the behavior of a variable stiffness actuator
connected to a load, we use the port-based model shown in
Figure 6. The C-element, together with its power conjugate
variables, and the control port are defined as in Section IV-B.
The I-element models the inertial properties of the load. In
particular, it represents a storage of kinetic energy, given by
the energy functionHp(p) =

1
2mp2, where p is the momentum

of the load and m its mass. By the interconnection of this
element to the output port, the port behavior is now given by

fI =
∂Hp

∂p
(p) (= ṙ)

eI = ṗ (= F )
(19)

Note that, from (18),

ṗ = −BT (q, r)eS = −BT (q, r)
∂He

∂s
(s) (20)

In order to describe the Dirac structure of the variable stiff-
ness actuator and the load in an input/output port-Hamiltonian
system representation, as state of the system, we take

x = (s, p, q, r)

i.e., the state of the elastic elements, the momentum of the
mass, the configuration of the internal degrees of freedom, and
the actuator output position, respectively. If we consider the
control port (fC , eC) as the input/output port of the system,
i.e., (u,−y), we can model this system in a input/output port-

Figure 3.1: Generic port-based model of variable stiffness actuators—The internal elastic elements
are represented by the C-element. The internal degrees of freedom are controlled through the
control port (fC , eC), while the interaction with the load is through the interaction port (fI , eI).

• the actuator has ns internal elastic elements, with state s and an energy
function He(s) describing the amount of elastic energy as function of the
spring state;

• the actuator has nq ≥ ns actuated degrees of freedom with configuration q;

• the apparent output stiffness K is determined by the intrinsic properties of
the internal elastic elements and their state, and the configuration of the
internal degrees of freedom.

Furthermore, it is assumed that internal friction and inertias can be neglected
without affecting the working principle of the actuator design. •

In Figure 3.1 a bond graph representation of a generic model for variable stiff-
ness actuators is presented, incorporating the assumptions listed above. In par-
ticular, the model includes a multidimensional C-element representing the internal
elastic elements, a one-dimensional interaction port (fI , eI) connecting the actuator
to its load, and a multidimensional control port (fC , eC) defining the dynamics of
the internal degrees of freedom. The Dirac structure D defines the interconnection
structure. For the working principles presented in Chapter 2, the Dirac structure
is defined by the actuator kinematics.

The port behavior of the C-element is described by

ṡ = fS , eS =
∂He

∂s
, (3.1)

such that the dual product �eS |fS� of the flow fS and the effort1 eS defines the
power flow through the port:

�eS |fS� := eTSfS = Ḣe(s). (3.2)

This description allows the C-element to model any elastic element.

1Efforts behave as row-vectors (co-vectors), but in this thesis they will be written as column-
vectors for notational conveniency.
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The internal degrees of freedom are controlled through the control port, with
associated port variables (fC , eC). Here, the flow fC corresponds to the rate of
change q̇ of the configuration q of the internal degrees of freedom, with eC the
collocated effort.

The output behavior of the variable stiffness actuator is described by the port
variables (fI , eI), corresponding to the rate of change ṙ of the actuator output po-
sition, and the torque or force exerted by the actuator, respectively. The apparent
output stiffness K is then defined as

K :=
δeI
δr

, (3.3)

i.e. the infinitesimal change in generated effort resulting from an infinitesimal
displacement of the output position. Note that, under the previously stated as-
sumptions, the apparent stiffness K should at least be a function of q, and possibly
also of r.

The Dirac structure D defines a power-continuous interconnection of the C-
element and the control and interaction ports. It thus describes the kinematic
working principle of the variable stiffness actuator, and may therefore depend on
the configuration variables q of the internal degrees of freedom and the actuator
output position r. Considering the causality of the ports, it can be represented by
a skew-symmetric matrix D(q, r) in




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 . (3.4)

The sub-matrices A(q, r) and B(q, r) define the relation between fC and fI , i.e.
the rates of change of the configuration variables q and r, and fS , i.e. the rate of
change of the state variables s of the elastic elements. Therefore, by defining the
kinematic relationship λ between the configuration (q, r) and the state s, i.e.

λ : (q, r) �→ s, (3.5)

it is found that

A(q, r) :=
∂λ

∂q
(q, r) and B(q, r) :=

∂λ

∂r
(q, r). (3.6)

The kinematic relations (3.6) and the representation of the Dirac structure (3.4)
provide important insights in the working principles of the variable stiffness actu-
ator. In particular, the generic port-based model enables to investigate the power
flows in the control and interaction ports, and the energy storage of the elastic
elements. This analysis is the focus of the remainder of this chapter, providing the
basis for energy-based control strategies for variable stiffness actuators, which will
be discussed in Chapter 4.
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3.2 Power Flow Analysis

As stated before, the Dirac structure defines a power-continuous interconnection
of the connected ports. As such, the following equality follows directly from (3.4):

�eS |fS�+ �eC |fC�+ �eI |fI� = 0.

Using (3.2) and the kinematic relations (3.6) yields

∂THe

∂s
(ṡ+A(q, r)q̇ +B(q, r)ṙ) = 0. (3.7)

From this, the following result is obtained.

Lemma 3.1 (Energy-free stiffness regulation) The apparent output stiffness
of a variable stiffness actuator can be changed in an energy-free way if there exists
a trajectory q(t) that realizes the desired change of stiffness while simultaneously
satisfying

q̇ ∈ ker A(q, r),

where ker A(q, r) denotes the kernel of the Jacobian matrix A(q, r).

Proof: It follows directly from (3.7) that trajectories q(t) satisfying the con-
ditions of Lemma 3.1 results in

Ḣe = −eTSB(q, r)ṙ,

i.e. the reconfiguration of the internal degrees of freedom does not induce a power
flow through the control port, and any change in the energy balance is due to
interaction with the environment through the interaction port. �

Remark 3.1 It is emphasized that Lemma 3.1 states that the stiffness change is
energy-free, which mean that the energy balance is not altered by the control
action. In particular, if an actuator has multiple internal degrees of freedom, it
is possible that positive work is done on one degree of freedom, while the same
amount of negative work is done on another. The net result is a zero power flow
through the control port, but it is apparent that in fact energy is required to achieve
the change in output stiffness. �

In order to realize variable stiffness actuators that can change their apparent
output stiffness in an energy-free way, Lemma 3.1 provides insights in design re-
quirements. In particular, the kinematics of the actuator must be such that A(q, r)
in fact has a kernel. This implies that the mechanical design must realize a re-
dundancy in the kinematic structure that connects the internal degrees of freedom
to the elastic elements. Furthermore, it can be shown that the apparent output
stiffness, for a particular output position r = r̄, is given by [8]

K(q, r = r̄) = BT (q, r̄)
∂2He

∂s2
B(q, r̄),
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Fig. 5. Maps between the tangent spaces TqQ, TrR and TsS - The image
spaces of the maps A(q, r) and B(q, r) are subspaces of TsS.

IV. POWER FLOW ANALYSIS

In this Section, we provide a detailed study of the power
flows in variable stiffness actuators using the port-based
model presented in the previous Section III. By analyzing the
kinematic structure of the actuators, we highlight the power
transferred from the control port, i.e. the internal degrees of
freedom, to the internal elastic elements and to the output port.
This analysis is facilitated by a change of coordinates on TsS
and T ∗

s S that makes these power flows explicit. In particular,
while the Dirac structure (6) describes the power distribution
inside the variable stiffness actuator, it does not explicitly
quantify the power exchange between the control and the
output ports. A proper change of coordinates, as detailed in
this Section, allows to determine how much control power
can reach the output port. This is based on an analysis of the
kinematics of the actuator and, more specifically, by examining
the relation between the rate of change of the configuration
variables of the actuation system, i.e., ṡ, q̇, ṙ, as defined by the
maps between the tangent spaces described in Section III-B.

A. Change of Coordinates

The power flow between the internal elastic elements, the
control and the interaction ports is implicitly described by (3)
and, in natural coordinates, is given by

�∂H
∂s

|ṡ� = �∂H
∂s

|A(q, r)q̇�+ �∂H
∂s

|B(q, r)ṙ�

in which we assume that no dissipation is internally present.
This means that the power flows are determined by the tangent
maps A(q, r) and B(q, r). To further investigate the power
flows, we define a new set of coordinates on TsS and T ∗

s S
by using the image of the map B(q, r).

Since the actuator output has only one degree of freedom,
i.e., r is one dimensional, the image of the tangent map B(q, r)
is also one dimensional and, in particular, it defines a line on
TsS . Let b� be a unit vector such that

im B(q, r) = span {b�}

Then, a set of ns − 1 unit vectors b⊥ exists, such that

span {b⊥} = im B⊥(q, r)

The subspace im B⊥(q, r) is the orthogonal complement to
im B(q, r) and, therefore, it is of dimension ns−1. This means

that {b�, b⊥} form a set of coordinate vectors that spans the
tangent space TsS , i.e., TsS = im B(q, r)⊕ im B⊥(q, r).

Orthogonality on the tangent space TsS is only defined if
a proper metric is defined on it. Elements from TsS represent
the rate of change of the state s of the elastic elements, which
may be equivalently considered as infinitesimal displacements
δs. A physically meaningful metric to measure δs is the
stiffness matrix [19], [20]. As stated in [21], in a conservative
system, the stiffness matrix in configuration space coordinates
is given by the Hessian of the potential energy function, and
can be shown to be a symmetric (0, 2)-tensor, and is thus a
valid metric on TsS . In our case, if we consider the natural
coordinates on TsS , the metric M is therefore given by

M =
∂2H

∂s2

where H(s) describes the amount of elastic energy stored in
the elastic elements. Note that the norm �δs�2M = δsTMδs,
induced by the metric M , has the unit of energy. If friction in
the system is modeled, a different metric should be considered
since the hypothesis of a conservative system is not valid
anymore.

As the metric M defines the inner product on TsS , the set
b⊥ is found by requiring

�b�, b⊥i �M = 0, i = 1, . . . , ns − 1

where �·, ·�M denotes the inner product with respect to the
metric M .

We can now define a change of coordinates from the natural
coordinates on TsS to the new defined coordinates. Let Sb be
a matrix describing the change of coordinates as

Sb =
�
b� b⊥

�
(9)

Note that Sb depends on the state s of the elastic elements. If ṡ
is an element of TsS , expressed in the natural coordinates, and
ṡb the same element, expressed in the coordinates {b�, b⊥}, it
follows that

ṡ = Sbṡ
b (10)

and, since the change of coordinates is by construction invert-
ible, it follows that ṡb = S−1

b ṡ.
The elements on TsS defined in (8) can be expressed in the

new coordinates. In particular, we have

ṡb = S−1
b ṡ

= S−1
b (A(q, r)q̇ +B(q, r)ṙ)

=: S−1
b (ṡq + ṡr)

=:

�
ṡ�q

ṡ⊥q

�
+

�
ṡ�r

ṡ⊥r

�
=:

�
ṡ�

ṡ⊥

� (11)

The element ṡ⊥r is zero by construction of the coordinate set.
Essentially, with this change of coordinates, from the real

elastic element C with state s, we create two virtual storage
elements C� and C⊥, with states s� and s⊥, respectively. By
construction, the state s� is one-dimensional, and the state s⊥

has dimension ns − 1. This scenario is depicted in Figure 6.
From (11), it can be noted that the virtual storage elements
C⊥ is not connected to the output, i.e., it captures the energy

Figure 3.2: Relations between tangent spaces—The kinematic maps A(q, r) and B(q, r) define
subspaces on TsS. Because the actuator output has only one degree of freedom, the integral
manifold of the map B(q, r) may define a submanifold of S.

which implies that an energy-free stiffness change can be achieved only if B(q, r)
strictly depends on q. Together, these requirements imply that only designs based
on a variable transmission ratio can be capable of energy-free stiffness changes.
This statement will be further elaborated in Section 3.3.

The condition stated in Lemma 3.1 is sufficient for changing the apparent ac-
tuator output stiffness in an energy-free way. However, it does not say anything
about the distribution of power if the condition is not satisfied. In particular, the
way in which the power flow through the control port is distributed to the internal
elastic elements and the interaction port provides information on the energetic costs
of changing the apparent output stiffness. To answer this question, the kinematic
relations defined in (3.6) need to be further investigated. Chapter 8 provides an
in-depth analysis of relation between actuator kinematics and these power flows.
Here, the main results are summarized.

For the analysis, consider the kinematic relation (3.5), which is a mapping
between manifolds. In particular, (q, r) ∈ Q ×R, where Q is a state manifold of
dimension nq, while R is, by assumption, one-dimensional. Then, considering the
state manifold S of dimension ns for the state of the internal elastic elements, the
map λ is defined as

λ : Q×R → S,

and, from (3.6),

A(q, r) : TqQ → TsS,
B(q, r) : TrR → TsS,

where TxX denotes the tangent space to X at x ∈ X . These relations are visualized
in Figure 3.2.

Because R is one-dimensional, the image of the tangent map B(q, r) is a line
on TsS. Instead of using the natural coordinates on TsS, let b� be a unit vector
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such that
im B(q, r) = span{b�}.

To complete the coordinate set, let b⊥ be a set of ns − 1 unit vectors such that

span{b⊥} = im B⊥(q, r),

where im B⊥(q, r) is the orthogonal complement to im B(q, r), such that

TsS = im B(q, r)⊕ im B⊥(q, r).

Length and orthogonality of vectors on TsS are only defined if a metric is
defined on this vector space. Elements of TsS can be interpreted as infinitesimal
displacements δs, corresponding to infinitesimal changes of the state of the elastic
elements. It can be shown that the stiffness matrix is a physically meaningful
metric for δs [25, 24]. Since the model does not incorporate internal friction, the
variable stiffness actuator model represents a conservative system, and in this case
the stiffness matrix is given by the Hessian of the potential energy function [76].
Therefore, the metric W on TsS is defined as:

W :=
∂2He

∂s2
,

where it is noted that the norm induced by W , i.e. �δs�2W := δsTW δs, has the
units of energy. The new coordinate vectors for TsS are now defined through the
additional orthogonality constraint

�b�, b⊥i �W = 0, i = 1, . . . , ns − 1,

where �·, ·�W denotes the inner product with respect to the metric W .
With the set {b�, b⊥} now defining a new set of coordinates for TsS, a change

of coordinates can be defined. Let Sb be a state-dependent matrix defining the
change of coordinates, i.e.

Sb =
�
b� b⊥

�
,

where the unit vectors b� and b⊥i are the columns of Sb, so that an element ṡ ∈ TsS
can be expressed in the new coordinates as

ṡb = S−1
b ṡ.

Using the new coordinates, the power flows in the actuator model can be further
analyzed by applying the coordinate change to (3.7). Expressing the flows to the
C-element in the new coordinates yields:

ṡb = S−1
b ṡ

= S−1
b (A(q, r)q̇ +B(q, r)ṙ)

=: S−1
b (ṡq + ṡr)

=

�
ṡ�q

ṡ⊥q

�
+

�
ṡ�r

ṡ⊥r

�
=:

�
ṡ�

ṡ⊥

�
,

(3.8)
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Fig. 6. Visualization of the virtual storage elements - The change of
coordinates S−1

b can be realized by two MTF-elements and a power splitter
(the diagonally-oriented line). The two C-elements, i.e., C� and C⊥, represent
the virtual storage elements.

supplied via the control port without redistributing it to the
output.

B. Power Flows
Only when the change of coordinates (10) is also applied to

elements of the cotangent space T ∗
s S , the power flows to C�

and C⊥ can be analyzed. On T ∗
s S , the change of coordinates

results in the transformation of efforts as [18]

∂TH

∂sT
Sb =:

�
F �
S F⊥

S

�
(12)

The port behavior of the two virtual storage elements C� and
C⊥ can now be properly defined by using (11) and (12), i.e.,

ṡ� = ṡ�q + ṡ�r , e�S = F �
S

ṡ⊥ = ṡ⊥q , e⊥S = F⊥
S

The power supplied via the control port is given by

PC = �eC |fC� = −�AT (q, r) eS |q̇� = −�∂H
∂s

|ṡq�

and expressions for the power flows from the control port
toward the two virtual storage elements are

P �
C = −�F �

S |ṡ�q� (13)
P⊥
C = −�F⊥

S |ṡ⊥q � (14)

It is readily verified that the change of coordinates is power
continuous, i.e.,

P �
C + P⊥

C = PC

Remark 4.1: Note that the dynamical behavior of the load
is not modeled and, therefore, the proposed analysis is task-
independent. The power flow PL to the load is given by PL =
PC − P � − P⊥, in which P � cannot be computed. However,
since there is a direct connection between C� and the output,

by means of the 0-junction, the power flow P � can be used to
do work on the output. On the other hand, the power flow P⊥

is completely captured by C⊥. It represents the power supplied
by the control port, which cannot be used to do any work on
the output, but is instead internally stored in the actuator due
to its kinematic structure. �

Remark 4.2: The image of the map B(q, r) defines an
involutive distribution on S with dimension one, since the
output has only one degree of freedom. If the set {b⊥} is not
empty, then, for any configuration (q, r), there exists a foliation
Sr that is the integral manifold of this distribution [18]. This
integral manifold is also one-dimensional. Since the energy
function H(s) is positive semidefinite by definition, it has a
minimum on Sr, which defines how much energy can go out
from the elastic elements via the output port. This minimum
is however, in general, not the same as the global minimum
of H(s) on S . Hence, there is energy stored in the elastic
elements that cannot be used to do work on the output. �

C. Power Flow Ratio

The change of coordinates and the subsequent definition
of power flows in (13) and (14), as visualized in Figure 6,
give rise to the definition of a power flow ratio. As already
observed, the virtual power flow P⊥

C is disconnected from the
output, and thus it cannot be used to do work at the output.
Intuitively, the ratio

µ =
P⊥
C

PC
(15)

indicates how much of the power supplied via the control port
is, in fact, captured by the virtual storage element C⊥ and,
therefore, lost: the lower this measure is, the less energy is
captured by the elastic elements. Note that µ ∈ [0, 1].

Since the coordinate change is configuration dependent, the
power flow ratio µ is a dynamic measure of power flows. The
rationale in this analysis is that instantaneous power provided
by the controller should provide an instantaneous power flow
to the output and should closely match the provided power
flow from the controller.

V. ANALYSIS OF CONCEPTUAL VARIABLE STIFFNESS
ACTUATOR DESIGNS

In this Section, we analyze the working principles of three
designs of variable stiffness actuators, which realize a variable
output stiffness by means of different kinematic structures. As
follows from the previous Sections, the power flows to the
virtual storage elements are defined by the maps A(q, r) and
B(q, r), i.e., by the kinematic properties of the actuator design.
First, we present the model of the designs in a port-based
formalism, and then we proceed by evaluating the power flow
ratio µ, as defined in (15).

A. Design Based on a Lever Arm of Variable Length

In some designs, such as the vsaUT [10], [11], AwAS [12],
AwAS-II [13] and HDAU [14], the change of the output
stiffness is realized through a change of the transmission ratio

Figure 3.3: Virtual storage elements—Due to the change of coordinates, two separate C-elements
have been constructed, of which one is disconnected from the actuator output. The change of
coordinates thus provides insights in the power flows of the model shown in Figure 3.1.

emphasizing that ṡ⊥r is zero by construction of the new coordinates. By applying the
change of coordinates, (3.8) defines two virtual C-elements, replacing the original
C-element in Figure 3.1. In particular, (3.8) defines a one-dimensional element C�

with state s�, and an element C⊥ of dimension ns − 1, with state s⊥. Figure 3.3
visualizes this construction by making explicit the Dirac structure and the change
of coordinates using transformation elements (denoted by MTF; see Chapter 8 for
more details). It can be seen that the virtual C⊥-element is disconnected from the
interaction port.

To find the power flows to C� and C⊥, the coordinate transformation needs to
be applied to the efforts as well. In particular, since efforts are elements of T ∗

s S,
the co-tangent space to S at s, the change of coordinates is applied as [42]

�
∂THe

∂s

�b

=
∂THe

∂s
Sb

=:
�
e� e⊥

�
.

(3.9)

It can be readily verified that the change of coordinates is power-continuous, ob-
taining the following equality from (3.8) and (3.9):

�eS |ṡ� = �e�|ṡ��+ �e⊥|ṡ⊥�.
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Since the interaction port behavior is not explicitly modeled, ṡ�r in (3.8) is unknown.
Instead, set

f⊥ = ṡ⊥q and f� = ṡ�q ,

so that, from Figure 3.3,

�eC |fC� = �e�|f��+ �e⊥|f⊥�, (3.10)

or, equivalently,

PC = P �
C + P⊥

C . (3.11)

With this, the power flows have been decomposed, providing a means to evaluate
how much power supplied through the control port flows to the C⊥-element and
the C� element.

Remark 3.2 Note that P � is the power flow going to either the C�-element or to the
interaction port. How much power actually goes to either is dependent on the load
and the task. Instead, P⊥ will definitely not reach the interaction port. However,
note that this decomposition of power flows in an instantaneous decomposition,
since it is state-dependent, and thus does not provide information on the energy
balance: P⊥ may be temporarily stored and released at a later time. �

3.3 Measuring Energy Efficiency

The decomposition of the power flows, defined in (3.10) and (3.11), facilitates the
notion of measuring energy efficiency of a variable stiffness actuator. In particu-
lar, considering that the C⊥-element is not connected to the interaction port, the
quantity

µ :=
P⊥
C

PC
,

can be defined, that indicates which fraction of the power PC supplied via the
control port is captured by the C⊥-element, and thus is not used to do work at
the interaction port. Note that µ ∈ [0, 1], and that a lower value of µ indicates a
higher efficiency in using the control power.

Remark 3.3 Mathematically speaking, the image of the map B(q, r) defines a one-
dimensional involutive distribution on S. If the set {b⊥} is not empty, then for
all configurations (q, r) the integral manifold of this distribution is a foliation on
S. On this foliation, the positive-definite energy function He(s) will have a local
minimum that does not necessarily coincide with the global minimum on S. The
difference in energy levels between the local and the global minimum is the energy
captured by the C⊥-element. �
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By calculating µ for the working principles described in Chapter 2, their perfor-
mance can be compared. In particular, consider q̇ achieving a desired rate of change
ṙ of the output position and a desired rate of change K̇ of the apparent output stiff-
ness. Then, given the current state s of the elastic elements, the quantity µ can be
calculated. The details of these calculations can be found in Chapter 8. From these
calculations is follows that the design incorporating the antagonistic springs (the
principle described in Section 2.2.1) can attain lower values of µ than the designed
with decoupled stiffness control (the principle described in Section 2.2.2). This can
be explained by the design characteristic of the latter: by using a separate degree
of freedom solely for pretensioning the internal springs, the power supplied for this
degree of freedom is by definition captured by the elastic elements. Consequently,
it can be concluded that this design will be less efficient when the stiffness needs
to be frequently changed.

The third design principle, discussed in Section 2.2.3, provides an interesting
advantage in the context of this power flow analysis. In particular, the following
result is obtained.

Lemma 3.2 (Energy-efficient variable stiffness actuators) For an actuator
with nq = 2 internal degrees of freedom, satisfying the conditions of Lemma 3.1,
µ = 0 for any choice of (ṙ, K̇).

Proof: For nq = 2, Lemma 3.1 requires that ns = 1, i.e. one internal elastic
element. As a result, the image of B(q, r) is the entire tangent space TsS, and
therefore the set {b⊥} is empty, yielding µ = 0. �

A prototype design for a variable stiffness actuator, satisfying Lemma 3.2 has
been presented in [68, 64], and is discussed in detail in Chapter 7. The conceptual
design is shown in Figure 3.4, and is based on a lever arm mechanism with variable
effective lever length. If R is the radius of the pulley, let

s = Rϕ (3.12)

be the elongation of the linear spring with stiffness k. For the sake of simplicity,
assume that ϕ ≈ 0, so that using the small angle approximation yields

ϕ =
q2 − x

q1
.

The output force F can then be approximated by

F = k
R2

q21
(q2 − x),

from which the apparent output stiffness K is obtained as

K :=
∂F

∂x
= k

R2

q21
.
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Figure 3.4: Working principle of an energy-efficient variable stiffness actuator—The effective
length q1 of the lever arm determines how the linear spring with stiffness k is perceived at the
actuator output.

Indeed, this design satisfies the conditions of Lemma 3.2, because, from (3.12),

A(q, r) =
�
− R

q21
(q2 − x) R

q1

�
,

for which a kernel exists for non-zero values of q1. Variations on this principle are
also used in the actuators presented in [34, 39], and was at the basis of the design
presented in [26].

The power flow analysis presented in this chapter provides interesting insights
in how energy is distributed between the variable stiffness actuator and the en-
vironment. In particular, it shows how power supplied through the control port
can be captured by the internal elastic elements. Furthermore, Lemma 3.1 and
Lemma 3.2 provided requirements for the designs of variable stiffness actuators,
with the aim of avoiding energy being ‘locked up’. The next chapter will further
explore the energetic behavior of variable stiffness actuators and present control
strategies that exploit the energy-storing properties of the internal elastic elements.



CHAPTER 4

Energy-based Control Strategies

The previous chapter provided important insights in how power is distributed
within a variable stiffness actuator. Given the energy-storing capabilities of elastic
elements, the question arises how the power flows can be controlled in such a way
that energy is internally stored by the elastic elements, for example when negative
work is done at the interaction port.

The idea of including an elastic element in actuator designs, with the aim of
temporary energy storage, was explored in [52, 51]. Because elastic elements store
mechanical energy, there are no losses except those due to friction. Therefore, it is
argued that this approach is preferable to trying to store energy in the electrical
domain, since this would require a conversion step from the mechanical domain
to the electrical domain, and these conversions between domains would induce
additional losses. This chapter presents two control strategies for variable stiffness
actuators, that take into account the energy storing capabilities of the internal
elastic elements. It is shown that in this way it is possible to achieve more energy-
efficient actuation, in particular for periodic motions.

4.1 Control of Power Flows

The first control strategy, discussed in detail in Chapter 9, controls the power
flow through the control port. In particular, starting from the model depicted
in Figure 3.1, by regulating the power flow through the control port, the control
strategy regulates the energetic interaction between the internal elastic elements,
represented by the C-element, and the interaction port.

Consider a specific task that needs to be performed, e.g. tracking a reference
trajectory r∗(t) for a joint actuated by a variable stiffness actuator. The control
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objective is to find trajectories q(t) for the internal degrees of freedom, such that,
while performing the task, as much energy can be stored in the internal elastic
elements when negative work is done at the joint side.

The dynamic behavior of the variable stiffness actuator, described by (3.1) and
(3.4) can be written in state space form as follows:

d

dt




s
q
r



 =




A(q, r) B(q, r)

1 0
0 1




�
fC
fI

�
. (4.1)

By defining the state x := (s, q, r), (4.1) can be written more compactly as

ẋ =

nq+1�

i=1

gi(x)ui,

i.e. a drift-less system with input vector fields gi and inputs ui. In addition, define
the output function

h1(t) = e∗I − eI ,

where e∗I is the desired effort at the interaction port. It is assumed that the desired
effort is known, for example by defining a reference trajectory r∗(t) and a feedback
control loop.

It can be readily verified that the relative degree of h1 is ρ = 1, yielding:

ḣ1 = ė∗I −
nq+1�

i=1

LgieI · ui, (4.2)

where Lvf denotes the Lie-derivative of a function f along a vector field v. Rear-
ranging (4.2) yields

ḣ1 = ė∗I −
��

Lg1eI · · · Lgnq
eI
�
q̇ + Lgnq+1eI · ṙ

�
.

By defining
V =

�
Lg1eI · · · Lgnq

eI
�
, (4.3)

and assuming that these Lie-derivatives do not vanish, the following result is ob-
tained.

Lemma 4.1 (Nominal force control) Given a desired interaction effort e∗I(t)
and initial conditions such that h1(0) = 0 and ḣ1(0) = 0, the following control
input realizes h1(t) = 0:

fC,n = V +
�
ė∗I − Lgnq+1eI · fI

�
, (4.4)

where V + denotes the Moore-Penrose pseudo-inverse of V .
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The control input fC,n can be considered a nominal control input, as it does
solve the control problem, but does not yet consider the energy stored in the elastic
elements of the variable stiffness actuator. In order to investigate the regulation of
the power flow through the control port, and in this way regulate the power flow
between the C-element and the interaction port, consider a variable stiffness actu-
ator that satisfies the conditions of Lemma 3.1. Considering the state manifold Q
for the configuration of the internal degrees of freedom, the characterizing property
of these actuators is that a subspace of the tangent space to Q is defined by the
kernel of the surjective map A(q, r). Supposing the manifold Q to be Euclidean
around q, TqQ can be partitioned such that

TqQ = ker A(q, r)⊕D,

where D is an orthogonal subspace of TqQ to ker A(q, r).1 The dynamics of q are
trivial, i.e. q̇ = fC for all q̇ ∈ TqQ, and therefore the control input fC can be
chosen such that, by Lemma 3.1, the energy in the internal elastic elements does
not change.

Lemma 4.2 (Energy-efficient force control) Consider a variable stiffness ac-
tuator satisfying the requirements of Lemma 3.1, and assume that the conditions
stated in Lemma 4.1 are satisfied. Define two sets of local coordinates on TqQ,
denoted by a1 and a2, such that:

span{a1} = ker A(q, r),

span{a2} = D.

Suppose Q to be an Euclidean manifold around q, such that in the coordinates
{a1, a2}, the metric g has the following form:

[g] =

�
I1 0
0 γI2

�
, (4.5)

where I1 and I2 are identity matrices of dimensions equal to those of ker A(q, r)
and D respectively, and γ : S → R+ is a function measuring the amount of energy
stored in the elastic elements. Then, the control input

fC,e = V �
�
ė∗I − Lgnq+1eI · fI

�
, (4.6)

where V � is the weighted pseudo inverse with respect to the metric g, tracks e∗I(t)
while the power flow through the control port is inversely proportional to the amount
of energy measured by γ.

1The assumption of Q being Euclidean is necessary to weigh the elastic energy with respect
to a reference. With an extension of the model with inertial properties or friction, it would be
possible to make the construction completely coordinate-free without this assumption.
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Figure 4.1: Realizing energy-efficient control—By decomposing the solution q̇e in a component in
the kernel of A(q, r) and a component orthogonal to it, the amount of power flowing through the
control port can be regulated by weighing each of these components in obtaining the solution to
the control problem.

Lemma 4.2 is based on the properties of the weighted pseudo-inverse [3]. The
principle is conceptually visualized in Figure 4.1, in which (∂/∂q1, ∂/∂q2) are the
canonical coordinates for TqQ. By using the control input (4.6), the component of
q̇e = fC,e corresponding to the coordinate a2 will be weighed more as γ becomes
larger. As a result, q̇e will be closer to ker A(q, r), effectively closing off the power
flow through the control port. In the limit case γ → ∞, the flow q̇e ∈ ker A(q, r),
and consequently PC = 0. A meaningful choice for γ would be a function propor-
tional to the value of the elastic energy function He(s).

The control law proposed in Lemma 4.2 does achieve a control of power flows,
but it does not consider the apparent output stiffness of the variable stiffness ac-
tuator. However, in some scenarios, it is required that a specific output stiffness is
maintained. Given a desired stiffness K∗, a second output function can be defined:

h2(t) = K∗ −K. (4.7)

It can be verified that, in general,2 the relative degree of h2 is ρ = 1, and therefore,
from (4.7):

ḣ2 = K̇∗ −
nq+1�

i=1

LgiK · ui

= K̇∗ −
��

Lg1K · · · Lgnq
K
�
q̇ + Lgnq+1K · ṙ

�
.

(4.8)

Then, the following extension is proposed.

2This is not the case only if the apparent output stiffness equals zero.
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Lemma 4.3 (Stiffness regulation) Assume initial conditions such that h2(0) =
0 and ḣ2(0) = 0. Let q̇k be a solution to (4.8) for given K̇∗ and ṙ. Then, by letting
fC,k be a projection of q̇k onto the kernel of V , as defined in (4.3), the control law
of Lemma 4.2 can be extended as follows:

fC,e �→ fC,e + fC,k, (4.9)

thus regulating the stiffness towards the desired value, without interfering with the
force control objective.

The essence of Lemma 4.3 is in projecting q̇k onto the kernel of V . Because of
this projection, K∗ cannot be exactly tracked in case of disturbances. However,
the extension prevents that the apparent actuator output stiffness deviates too
much from the desired value, but at the cost of interfering with the metric (4.5).
Chapter 9 presents numerical simulation results to illustrate these concepts. In
particular, it is shown that, while all three control strategies (4.4), (4.6) and (4.9)
can track a desired periodic motion and reject a disturbance, the energy-efficient
control law (4.6) requires the least amount energy to do so. The controller with the
stiffness regulation extension (4.9) requires less energy in rejecting the disturbance
than the nominal control (4.4), but more energy than the energy-efficient control
(4.6). This decrease in energy efficiency is traded-off against a regulation of the
apparent output stiffness.

4.2 Embodying Desired Behavior

If a variable stiffness actuator is used to actuate periodic motions, the question
arises if resonance-based control can be employed to achieve more energy efficient
actuation. This idea was explored in [55], in which it was shown that the joint
stiffness could be tuned to a constant optimal value to reduce energy consump-
tion to a minimum. In Chapter 10, a control strategy is presented in which the
dynamic behavior of the variable stiffness actuator is dynamically tuned to an op-
timal behavior, taking into account the energetic cost associated with changing the
apparent output stiffness.

The proposed control strategy is based on the idea that a variable stiffness
actuator basically behaves like a spring, but with variable stiffness, as illustrated
in Figure 1.2. Therefore, instead of describing the configuration of the internal
degrees of freedom by q ∈ Q, it is shown that, under some assumptions detailed
in Chapter 10, a change of coordinates exists such that the configuration of the
internal degrees of freedom is described by two new quantities corresponding to the
equilibrium position r̄ and the output stiffness K. In particular, define

S : q �→ q̃, q̄ := (r̄, K),

where K is defined in (3.3) and r̄ is defined as the minimizer of He(s) through the
kinematic map (3.5):

r̄ := argmin
r

(He ◦ λ)(q, r).
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Using this change of coordinates and defining the state

x = (x1, x2, x3, x4) := (r, ṙ, r̄,K),

the dynamics of a variable stiffness actuator, connected to a constant load of mass
m, can be written in the form

ẋ = f(x) + g1u1 + g2u1,

with

ẋ1 = x2

ẋ2 = 1
mx4(x3 − x1)

ẋ3 = u1

ẋ4 = u2

(4.10)

The control objective is to find control inputs (u1, u2) and initial conditions
x◦ = x(0) such that

J =

� ∞

0

1
2�x

◦
3 − x3�2r̄ + 1

2�x
◦
4 − x4�2K + 1

2�u�
2
u dt (4.11)

is minimized for weighted 2-norms � · �∗, to be defined hereafter. There are two
parts to be distinguished in this criterion. The first part (the first two terms of
the integrand) associates a cost to deviations of the actuator equilibrium position
and stiffness from their initial conditions, while the second part (the third term)
associates a cost to dynamic changes of these quantities. Essentially, minimizing J
means trying to find a constant linear spring whose dynamic behavior is “close” to
the desired behavior (“close” being defined by the minimum of J), and embedding
this constant spring in the controlled dynamics of the variable stiffness actuator.

The norms in (4.11) should be defined by the performance limits of the variable
stiffness actuator. For example, the norms � · �r̄ and � · �K measure displacements
and could thus be based on the operational limits of the internal degrees of freedom.
The norm � · �u measures dynamic changes of the configuration of the internal
degrees of freedom, and should thus have an energetic basis. In Chapter 10 it is
proposed to use the mass matrix corresponding to the actuators used to control
the internal degrees of freedom, expressed in the new coordinates.

Consider a desired periodic motion of the form

ẋ1 = x2,

ẋ2 = σ(x1)− γ,

for some function σ and a constant γ. Defining

Γ(x) = 1
mx4(x3 − x1)− σ(x1),

it can be shown that Γ(x) defines foliations Nγ on the state manifold X :

Nγ = {x ∈ X | Γ(x) = γ} .
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Fig. 2. Solutions (x3, x4) - The grey curves correspond to
the first step of the algorithm of Section 5, the black
curves to the optimal solution, with the dashed lines
indicating the initial values.

of both solutions. It can be clearly seen that the optimal
solution (solid black curve) achieves smaller excursions
from the initial conditions (dashed curves). It is noted that
both the solutions x3 and x4 are reduced comparatively
(observe the scales of the vertical axes).

The cost criterion (13) is calculated over a time span of
100 s. For the optimal solution found by the algorithm, a
numerical value of J = 141.374 is found. A fine-gridded
brute force calculation of the cost for all possible initial
conditions finds a minimum of J = 141.316, illustrating
the effectiveness of the algorithm. To illustrate that it
makes sense to have a varying stiffness, the process is
repeated with the same parameter values, but with u2 ≡ 0,
i.e. a fixed stiffness. The algorithm then finds an optimal
cost of J = 158.397 (brute force: J = 155.998), which
is higher than obtained with the variable stiffness, even
though we assigned a higher cost to the dynamic changes
of the stiffness with respect to the equilibrium position.

7. CONCLUSIONS AND FUTURE WORK

In this paper, a cost criterion was proposed, that formu-
lates a measure of embodiment of desired behavior into a
variable stiffness actuator. In particular, minimization of
the cost criterion achieves a desired output motion with
minimum control effort. The effectiveness of this approach

was illustrated in an algebraic and a simulation example.
Currently, the algorithm is being implemented on a test
setup, and experimental results will be reported in a future
article.

Future work will focus on how the behavior of the variable
stiffness actuator should change in case of a disturbance,
considering the fact that the disturbance will add energy
to the system that may be used efficiently for actuation.
Furthermore, extensions to multi degree of freedom sys-
tems need to be formulated. Rather than considering each
degree of freedom separately, it should be investigated if a
coordinated approach to embodiment of desired behavior
in all degrees of freedom is possible.
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Figure 4.2: Optimal trajectories x3(t) and x4(t)—The trajectories shown in black minimize the
criterion J . These trajectories show smaller excursions with respect to their initial value when
compared to a trajectory starting from arbitrary initial conditions (shown in grey).

By defining the error function hγ(x) = Γ(x) − γ, the control objective can be
reformulated to finding control inputs (u1, u2) such that, for initial conditions x◦ ∈
h−1
γ (0) ⊂ X , the state trajectories x(t) remain on the foliation while minimizing the

criterion (4.11). By employing an output-nulling algorithm [42], it can be shown
that these control inputs are given by

u = −A�LfΓ(x) +A⊥(x)v,

with
A =

�
Lg1Γ(x) Lg2Γ(x)

�
.

The vector fields f and gi are defined in (4.10), and the pseudo-inverse A� should
be calculated with respect to the metric defined through the norm � · �u. In this
way the term �u�2u in (4.11) is minimized. The annihilator A⊥ allows the additional
input v to achieve possible secondary control objectives without interfering with
the main objective (see Chapter 10 for details). The two remaining terms in (4.11)
must be minimized by choosing proper initial conditions x◦. Unfortunately, this
cannot be done analytically, and therefore it is proposed to solve this problem
numerically by employing a line search along the remaining degree of freedom in
choosing the control inputs to find the minimizers of J .

The proposed method is applied to a variable stiffness actuator tasked to track
the trajectory generated by a Duffing oscillator of the form [27]

ẍ1 + βx1 + αx3
1 = γ.

The norms � · �r̄ and � · �K were chosen identical, indicating no preference between
changing r̄ or K. However, the norm � · �u is chosen such that dynamic changes in
K are weighed four times more than dynamic changes in r̄. Figure 4.2 shows the
resulting trajectories for x3 = r̄ and x4 = K in black. Compared to the trajectories
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obtained by an arbitrary choice of initial conditions x◦
3 and x◦

4, shown in grey, the
resulting trajectories for the optimal x◦

3 and x◦
4 indeed show smaller excursions.

To evaluate the proposed optimization algorithm, the cost J defined in (4.11)
is calculated over a time-span of 100 s. A value of J = 141.374 is found by the
algorithm, while a fine-gridded brute force search over all possible initial conditions
finds a minimum of J = 141.316, showing the effectiveness of the algorithm. To
illustrate that a variable stiffness can yield more efficient actuation than a fixed
stiffness actuator (i.e. a series elastics actuator), the optimization procedure is
repeated with u2 ≡ 0, thus enforcing a constant output stiffness. This yields a cost
of J = 158.397 (brute force: J = 155.998), showing that even when a relatively
higher cost is associated to changing the actuator stiffness, it is still meaningful to
employ variable stiffness actuator for periodic motions.



CHAPTER 5

Application to Bipedal Walking

The previous chapters explored variable stiffness actuator design and performance
through the development of a generalized model and a simplified representation of
the load. This has resulted in important insights in the energetic behavior of the
actuator connected to a load, although on a conceptual level.

This chapter explores the application of variable stiffness actuation to bipedal
walking. It has been shown in [21] that a simple bipedal spring-mass model en-
codes a variety of gaits, for which it accurately reproduces the hip trajectories and
ground reaction patterns observed in human walking. In further research, it was
furthermore shown that the robustness of these gaits can be related to leg stiffness
[44]. Since humans can also modulate their leg stiffness by muscle co-contraction,
the extension of the bipedal spring-mass model with variable leg stiffness is an in-
teresting research venue. Therefore, this chapter investigates how variable stiffness
actuation can improve the robustness of the gaits of the bipedal spring-mass model.
Furthermore, it will be shown that the control strategy developed for the bipedal
spring-mass model is sufficiently robust to regulate the gait of extended models of
bipedal walkers that include swing leg dynamics. In this way, a template controller
is developed for control of bipedal walking robots.

5.1 Bipedal Walking with Compliant Legs

The model presented in [21] and shown in Figure 5.1, consists of a point mass mh,
restricted to move in the vertical plane, and two massless telescopic springs with
stiffness k0 and rest length L0, representing the legs. It is essentially a bipedal
spring-loaded inverted pendulum (SLIP) model. For appropriately chosen initial
conditions, this system exhibits a passive walking gait, illustrated in Figure 5.2.
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Fig. 1. The bipedal SLIP model—The model consists of a point mass
mh, located in the hip joint, i.e. where two massless telescopic springs,
with a constant spring stiffness k0 and rest length L0, are connected. The
configuration variables (q1, q2) describe the position of the hip.

variables, and pi denotes momentum variables, state vectors
are named x, and f(x) and gi(x) are drift and input vector
fields on the state manifold respectively. The Lie-derivative
of a function h along a vector field X is denoted by LXh.
Function arguments are omitted where this is considered
possible.

II. THE BIPEDAL SLIP MODEL

In this Section, we revisit the bipedal SLIP model, as
presented in [4]. The model is depicted in Fig. 1. It consists
of a point mass mh, located in the joint connecting the two
legs, i.e. the hip joint. The legs consist of massless telescopic
springs of stiffness k0 and rest length L0. The configuration
variables (q1, q2) =: q describe the planar position of the point
mass, with (p1, p2) =: p the associated momentum variables.
In the following, we derive the dynamic equations for this
system, and analyze its dynamics.

A. System Dynamics
The bipedal SLIP model shows, for appropriately chosen

initial conditions [4], [5], a passive walking gait as illustrated
in Fig. 2. In order to derive the dynamic equations that describe
the gait of this model, two phases need to be considered: 1)
two legs are in contact with the ground (i.e. the double support
phase), and 2) one leg is in contact with the ground (i.e. the
single support phase). Furthermore, we consider the parameter
α0, which is the angle at which the massless leg touches down
at the end of the single support phase, as indicated in Fig. 2.
The contact conditions are determined by the spring rest

length L0 and angle of attack α0, as shown in Fig. 2. In
particular, if the system is in the single support phase, the
touchdown event of the other leg occurs when

q2 = L0 sin(α0), (1)

and at this moment the foot contact point c2 is calculated as

c2 = q1 + L0 cos(α0).

Conversely, when the system is in the double support phase,
the transition to the single support phase occurs when either

L
0

α0

q(t)

L0 sin(α0)

SS DS SS DS SS

Fig. 2. Passive gait of the bipedal SLIP model—The model alternates
between single support (SS) and double support (DS) phases, depending on
the hip height and the model parameters L0 and α0. The gray shading will be
used throughout this paper to indicate that the walker is in the double support
phase.

of the two springs reaches its rest length with non-zero speed,
and thus loses contact with the ground, i.e. when

�
(q1 − ci)2 + q22 = L0, i = 1, 2. (2)

In nominal conditions, only the trailing leg is allowed to lift
off, after which the contact point c2 is relabeled as c1 to
correspond to the notation used for the single support phase.
In order to derive the dynamic equations, we define the

kinetic energy function K = 1
2p

TM−1p, where

M = diag(mh,mh) (3)

is the mass matrix and p := Mq̇ are the momentum variables.
The potential energy function is defined as

V = mhg0q2 + 1
2k0(L0 − L1)

2 + 1
2k0(L0 − L2)

2,

where Li :=
�
(q1 − ci)2 + q22 , and g0 is the gravitational

acceleration. During the single support phase, we set L2 ≡ L0

to eliminate the influence of this virtually swinging leg.
The dynamic equations in Hamiltonian form are defined

through the Hamiltonian energy function H = K + V and
given by

d
dt

�
q
p

�
=

�
0 I
−I 0

��∂H
∂q
∂H
∂p

�
. (4)

It is noted that solutions of (4) are of class C2. This is due
to the fact that the ∂V

∂q is not differentiable at the moment of
phase transition. This is because the massless second leg does
not have a zero rate of change of length at the moment of
touchdown, i.e.

d
dt
L2

���
t=t+touchdown

�= 0,

where t+touchdown indicates that the time-derivative is taken on
the right of the discontinuity. It will be shown later that this
has consequences for the controller design.

III. THE CONTROLLED V-SLIP MODEL

The passive bipedal SLIP model provides no control inputs,
and therefore the only way to influence its behavior is by the
choice of initial conditions. Therefore, it is proposed to extend

Figure 5.1: The bipedal SLIP model—The model consists of a point mass and massless telescopic
springs with constant stiffness k0, acting as legs.

During this gait, the system alternates between two phase: the single support
phase, in which only one leg is in contact with the ground, and the double support
phase, in which both legs are in contact with the ground.

The configuration variables (q1, q2) =: q describe the planar position of the hip
mass, and (p1, p2) =: p the associated momentum variables. The phase, either
single or double support, is determined by the vertical hip height q2, with the
transition from the single support phase to double support phase occurring when

q2 = L0 sin(α0),

where α0 is a suitably chosen angle of attack [21]. It is emphasized that the springs
are massless, and thus influence the dynamics instantaneously at the moment of
touchdown. The transition from the double support phase to the single support
phase occurs when the trailing leg reaches its rest length, thus preventing that the
springs pull from the ground, i.e. when

�
(q1 − c2)2 + q22 = L0. (5.1)

If the leading leg would lift-off, i.e. when the leading leg reaches its rest length,
the gait is considered to have failed. The dynamic equations can be readily derived
by considering the kinetic energy K and potential energy V of the hip mass, and
the elastic energy stored in the springs, as detailed in Chapter 11. By defining
the Hamiltonian energy function H = K + V , the dynamics can be written in
Hamiltonian form as

d

dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
. (5.2)

Since the legs are massless, there are no energy losses associated with the phase
transitions, and thus a constant energy level can be associated to a particular
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Fig. 1. The bipedal SLIP model—The model consists of a point mass
mh, located in the hip joint, i.e. where two massless telescopic springs,
with a constant spring stiffness k0 and rest length L0, are connected. The
configuration variables (q1, q2) describe the position of the hip.

variables, and pi denotes momentum variables, state vectors
are named x, and f(x) and gi(x) are drift and input vector
fields on the state manifold respectively. The Lie-derivative
of a function h along a vector field X is denoted by LXh.
Function arguments are omitted where this is considered
possible.

II. THE BIPEDAL SLIP MODEL

In this Section, we revisit the bipedal SLIP model, as
presented in [4]. The model is depicted in Fig. 1. It consists
of a point mass mh, located in the joint connecting the two
legs, i.e. the hip joint. The legs consist of massless telescopic
springs of stiffness k0 and rest length L0. The configuration
variables (q1, q2) =: q describe the planar position of the point
mass, with (p1, p2) =: p the associated momentum variables.
In the following, we derive the dynamic equations for this
system, and analyze its dynamics.

A. System Dynamics
The bipedal SLIP model shows, for appropriately chosen

initial conditions [4], [5], a passive walking gait as illustrated
in Fig. 2. In order to derive the dynamic equations that describe
the gait of this model, two phases need to be considered: 1)
two legs are in contact with the ground (i.e. the double support
phase), and 2) one leg is in contact with the ground (i.e. the
single support phase). Furthermore, we consider the parameter
α0, which is the angle at which the massless leg touches down
at the end of the single support phase, as indicated in Fig. 2.
The contact conditions are determined by the spring rest

length L0 and angle of attack α0, as shown in Fig. 2. In
particular, if the system is in the single support phase, the
touchdown event of the other leg occurs when

q2 = L0 sin(α0), (1)

and at this moment the foot contact point c2 is calculated as

c2 = q1 + L0 cos(α0).

Conversely, when the system is in the double support phase,
the transition to the single support phase occurs when either
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Fig. 2. Passive gait of the bipedal SLIP model—The model alternates
between single support (SS) and double support (DS) phases, depending on
the hip height and the model parameters L0 and α0. The gray shading will be
used throughout this paper to indicate that the walker is in the double support
phase.

of the two springs reaches its rest length with non-zero speed,
and thus loses contact with the ground, i.e. when

�
(q1 − ci)2 + q22 = L0, i = 1, 2. (2)

In nominal conditions, only the trailing leg is allowed to lift
off, after which the contact point c2 is relabeled as c1 to
correspond to the notation used for the single support phase.
In order to derive the dynamic equations, we define the

kinetic energy function K = 1
2p

TM−1p, where

M = diag(mh,mh) (3)

is the mass matrix and p := Mq̇ are the momentum variables.
The potential energy function is defined as

V = mhg0q2 + 1
2k0(L0 − L1)

2 + 1
2k0(L0 − L2)

2,

where Li :=
�
(q1 − ci)2 + q22 , and g0 is the gravitational

acceleration. During the single support phase, we set L2 ≡ L0

to eliminate the influence of this virtually swinging leg.
The dynamic equations in Hamiltonian form are defined

through the Hamiltonian energy function H = K + V and
given by

d
dt

�
q
p

�
=

�
0 I
−I 0

��∂H
∂q
∂H
∂p

�
. (4)

It is noted that solutions of (4) are of class C2. This is due
to the fact that the ∂V

∂q is not differentiable at the moment of
phase transition. This is because the massless second leg does
not have a zero rate of change of length at the moment of
touchdown, i.e.

d
dt
L2

���
t=t+touchdown

�= 0,

where t+touchdown indicates that the time-derivative is taken on
the right of the discontinuity. It will be shown later that this
has consequences for the controller design.

III. THE CONTROLLED V-SLIP MODEL

The passive bipedal SLIP model provides no control inputs,
and therefore the only way to influence its behavior is by the
choice of initial conditions. Therefore, it is proposed to extend

Figure 5.2: Gait trajectory of the bipedal SLIP model—For suitable initial conditions, the hip
trajectory q(t) results in a walking gait, alternating between single support (ss) and double
support (ds) phases. The phase transitions are determined by the model parameters L0 and α0,
corresponding to the rest length of the springs and the angle of attack at which the second leg
appears upon entering the double support phase.

gait. As was shown in [21, 44], these energy levels encode the type of gait and
the average walking speed. Furthermore, a constant energy level during nominal
gait is interesting from a control perspective, as it implies that a gait controller
can be designed that only requires to inject or remove power to the system when
a disturbance occurs [69].

5.2 Gait Control using Variable Leg Stiffness

To provide the bipedal SLIP model with control inputs, consider the leg stiffness to
be controllable. The extended model, called V-SLIP (for Variable SLIP), is shown
in Figure 5.3. In this way, control action can be used to reach and maintain a
desired gait. The total leg stiffness is ki = k0 + ui, i = 1, 2, where k0 is a constant
leg stiffness and ui is a controllable additional (e.g. parallel) stiffness. Note that ki
should be positive definite in order to be physically meaningful. As shown in detail
in Chapter 11, the dynamics can be derived in port-Hamiltonian form analogously
to the SLIP dynamics (5.2):

d

dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�

∂H
∂q
∂H
∂p

�
,

(5.3)

with u = (u1, u2) the controlled leg stiffness. The input matrix B is given by

B =

�
∂φ1

∂q1
∂φ2

∂q1
∂φ1

∂q2
∂φ2

∂q2

�
,
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Fig. 3. The V-SLIP model—In contrast to the bipedal SLIP model, the V-
SLIP model has a controllable leg stiffness. This provides two control inputs
during the double support phase, but only one control input during the single
support phase, rendering the system underactuated.

the bipedal SLIP model to have massless telescopic springs
with variable stiffness [12]. This bipedal V-SLIP (for Variable
SLIP) model is depicted in Fig. 3. The difference with respect
to the bipedal SLIP model is that the leg stiffness now has a
controllable part, i.e. ki = k0 + ui, i = 1, 2. In this Section
we give the dynamic equations for this system and present a
stabilizing controller.

A. System Dynamics

The autonomous part of the dynamics of the bipedal V-SLIP
model is the same as for the bipedal SLIP model. To include
the control inputs, (4) is extended, arriving at the dynamics
for the V-SLIP model in port-Hamiltonian form:

d
dt

�
q
p

�
=

�
0 I
−I 0

��∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�
∂H
∂q
∂H
∂p

�
,

(5)

with u = (u1, u2) the controlled leg stiffness, and H is as
defined in Section II-A. The input matrix B is given by

B =

�
∂φ1

∂q1
∂φ2

∂q1
∂φ1

∂q2
∂φ2

∂q2

�
,

with

φ1 = − 1
2 (L0 − L1)

2 and φ2 = − 1
2 (L0 − L2)

2.

The output y is dual to u, and it is readily verified that the
dual product �u|y� has the units of power [13].
As in Section II-A, we set L2 ≡ L0 during the single

support phase to eliminate the influence of the swing leg. It is
emphasized that the control inputs ui, i = 1, 2 are restricted,
such that the total leg stiffness is physically meaningful, i.e.

ui ∈ R | 0 < k0 + ui < ∞. (6)

B. Controller Design

The bipedal SLIP model already shows stable walking gaits,
with a relatively large basin of attraction [5]. As shown in our
previous work, it is possible to tune the spring stiffness k to
further increase the robustness of the gait, while minimally
modifying the natural dynamics of the walker [12].
The control strategy uses a natural gait of the bipedal SLIP

model as reference, i.e. trajectories (q◦(t), q̇◦(t)) that are a
solution of (4), where q̇ is defined as q̇ = M−1p. However,
the bipedal V-SLIP model is underactuated during the single
support phase (since there is only one leg in contact with
the ground), and thus it is not possible to track (q◦(t), q̇◦(t))
exactly. To avoid that the walker lags behind the reference
during the underactuated phase, we propose to instead de-
fine a curve in the configuration space by parameterizing
(q◦(t), q̇◦(t)) by the horizontal position q1, similar to the
approach presented in [14]. This is possible1 as long as q̇1 > 0.
Then, the desired reference gait can be equivalently described
as (q∗2(q1), q̇

∗
1(q1)). The control objective is to have the hip

trajectory converge to an arbitrary small neighborhood of this
reference gait.
In formulating the control strategy, we define the state x =

(q, p) and rewrite (5) in standard form as

ẋ = f(x) +
�

i

gi(x)ui. (7)

The following control strategy is proposed.
Proposition 1: Given parameterized reference state trajec-

tories (q∗2 , q̇∗1), define the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1.

Then the following control strategy renders solutions of (5)
asymptotically converging to (q∗2 , q̇

∗
1):

• during the single support phase,

u1 = − 1

Lg1Lfh1

�
L2
fh1 + κdLfh1 + κph1

�
(8)

and u2 ≡ 0;
• during the double support phase, when the leading leg
length satisfies L0 − Le ≤ L1 < L0 (i.e. just after the
touchdown event), or when the trailing leg length satisfies
L0 − Le ≤ L2 < L0 (just before the lift-off event), for
some small Le > 0:

�
u1

u2

�
= −A�

�
L2
fh1 + κdLfh1 + κph1

�
, (9)

with
A =

�
Lg1Lfh1 Lg2Lfh1

�
,

and with � denoting the Moore-Penrose2 pseudo inverse;

1Exact parameterization is not possible, because q(t) is of class C2 only,
as outlined in Section II-A. Approximating (q◦(t), q̇◦(t)) by finite Fourier
series is an alternative that gives satisfactory results, as will be demonstrated.
2Since we are addressing a numerical issue, we are not concerned about

deriving a proper invariant metric for defining the pseudo-inverse. Instead, we
use the Euclidian metric.

Figure 5.3: The V-SLIP model—By considering a variable leg stiffness ki = k0+ui, control inputs
are provided that can be used to maintain a desired SLIP gait.

with
φ1 = − 1

2 (L0 − L1)
2 and φ2 = − 1

2 (L0 − L2)
2.

The control port is defined by the dual variables (u, y). Indeed, the dual product
�u|y� has the units of power.

Since the bipedal SLIP model is energy conservative, the gait of this SLIP
model is a good reference for the V-SLIP model. In particular, by the definition
of the control inputs, it is possible for the controlled model to track the gait of
the SLIP model with zero effort in the absence of disturbances. Defining the
state x = (q, p), let xSLIP(t) be a state trajectory of the bipedal SLIP model, i.e.
a solution of (5.2). Assuming that the forward velocity q̇1 > 0, it is possible to
parameterize xSLIP(t) by the forward position q1, yielding a parameterized reference
gait (q∗1 , q

∗
2 , q̇

∗
1 , q̇

∗
2), where q̇i := 1

mh
pi. It is not possible to exactly track such

a reference gait, because the system is underactuated during the single support
phase. However, the following result can be obtained.

Lemma 5.1 (V-SLIP Control) Given a parameterized reference gait trajectory
(q∗2 , q̇

∗
1), define the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1.

A control strategy exists that, while considering the transitions between the single
and double support phases, realizes:

lim
t→∞

q∗2(q1(t))− q2(t) = 0,

and, for some small ε > 0,

lim
t→∞

|q̇∗1(q1(t))− q̇1(t)| < ε.
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(a) Bipedal SLIP model.
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(b) Bipedal V-SLIP model.

Figure 5.4: Energy balance of the SLIP and V-SLIP models—At the instance indicated by the
dashed line, a disturbance is applied to both the SLIP and V-SLIP models. It can be seen that
the V-SLIP model recovers successfully, returning to the constant energy level of the SLIP gait.

The details on the derivation of the control strategy and the stability proof are
given in Chapter 11.

The effectiveness of this control strategy is illustrated in Figure 5.4. The plots
show the energy balance of the bipedal SLIP and V-SLIP models, subjected to
a disturbance. It can be seen that the disturbance is successfully rejected. The
energy balance shows that indeed control effort is only required in rejecting the
disturbance, not in nominal conditions, as exemplified by the constant energy levels
before and after the disturbance. This result has been further investigated by
applying varying disturbances at different moments throughout the gait [69]. It
was shown that the control strategy is able to reject larger disturbances than the
uncontrolled bipedal SLIP model.

While the proposed control strategy indeed realizes improved robustness levels
for the bipedal SLIP model with variable leg stiffness, the model itself is still
conceptual. In particular, since the legs are assumed to be massless springs, the
dynamics of the swing leg are not considered. Therefore, more refined models are
explored hereafter, which do incorporate swing leg dynamics. It will be shown that
the control strategy presented in Lemma 5.1 can be easily extended to cope with
the more complex dynamics of these models.

5.3 Influence of Swing Leg Dynamics

Just as the bipedal SLIP model, the V-SLIP model is purely conceptual. In partic-
ular, by assuming massless legs, the dynamics of the single support phase are not
realistic, because influence of a swinging leg is not considered. To investigate how
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Fig. 5. The V-SLIP model with feet—By adding feet masses mf to the
V-SLIP model, swing leg dynamics are introduced. The swing leg is assumed
to be constraint at a length L0 during swing, and the stance foot is assumed
to be fixed to the ground, i.e. no slip or bouncing in the contact point.

insights in human walking performance, the models are con-
ceptual. In particular, all mass is assumed to be concentrated
in a single point mass at the hip, and the legs are assumed to
be massless springs—assumptions that cannot be considered
valid for a robotic system.
In this Section we extend the V-SLIP model to incorporate

swing leg dynamics. This is done by adding a foot mass,
as shown in Fig. 5 [17]. During the swing phase, the leg is
assumed to have a fixed length L0, while during the stance
phase it is again assumed to be a massless spring connecting
the foot and the hip masses. In this Section we derive the
dynamic equations that govern the system behavior, and extend
the controller from Section III-B to handle the swing leg
dynamics.

A. System Dynamics
In deriving the dynamics of the V-SLIP model with feet,

we assume that:
• no slip or bouncing occurs in the foot contact points;
• the springs are unilateral, meaning that we only allow
them to be compressed;

• during the single support phase, the swing leg is con-
straint to have length L0.

Under these assumptions, during the double support phase, we
can use the double support phase model used in Section III-A,
and the model behavior is described accordingly by (5).
During the single support phase, the model can be simplified

as shown in Fig. 6. The configuration of the system can be
described by (q1, q2, q3), where q3 ∈ [0,π) is the orientation
of the swing leg. The total mass of the swing leg is m =
mh +mf . Since the swing leg is assumed to be a rigid link
of length L0, its center of mass is at a distance

dcom =
mfL0

mh +mf

from the hip joint (as indicated in Fig. 6). The moment of
inertia of the leg around its center of mass is given by

Jcom = mhd
2
com +mf (L0 − dcom)

2.
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Fig. 6. Model simplification—Under the assumptions of a rigid swing leg
and no slip or bouncing in the foot contact point, the model depicted in Fig. 5
can be simplified during the single support phase. During the double support
phase, the model is reduced to the V-SLIP model, as shown in Fig. 3.

In order to derive the dynamic equations of the system for
the single support phase, we let (v1, v2, v3) =: v denote the
horizontal, vertical and rotational velocity of the (center of
mass of the) swing leg. These velocities are related to the rate
of change of the configuration variables q̇ by the Jacobian
matrix S(q), defined as:

S(q) =




1 0 dcom sin(q3)
0 1 −dcom cos(q3)
0 0 1



 , (11)

such that v = S(q)q̇. This allows to have the configuration
variables q coincide with those used in the V-SLIP model of
Section III. In particular, by defining p := Mv, with

M = diag(mh +mf ,mh +mf , Jcom) (12)

the mass matrix of the rigid body representing swing leg, the
dynamics during the single support phase can be derived in
terms of (q, p) as follows.
The kinetic energy is given by K = 1

2p
TM−1p, and we

derive the potential energy function V as

V = (mh +mf )g0(q2 − dcom sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function is given by H = K +
V , and we derive the dynamic equations in port-Hamiltonian
form by using the Boltzmann-Hamel equations [18], yielding:
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where the skew-symmetric matrix J is given by
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Again, the output y is dual to the input u, so that �u|y�
defines a power flow. The control input u = (u1, τ), i.e. the
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to be fixed to the ground, i.e. no slip or bouncing in the contact point.
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assumed to have a fixed length L0, while during the stance
phase it is again assumed to be a massless spring connecting
the foot and the hip masses. In this Section we derive the
dynamic equations that govern the system behavior, and extend
the controller from Section III-B to handle the swing leg
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them to be compressed;
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and the model behavior is described accordingly by (5).
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and no slip or bouncing in the foot contact point, the model depicted in Fig. 5
can be simplified during the single support phase. During the double support
phase, the model is reduced to the V-SLIP model, as shown in Fig. 3.

In order to derive the dynamic equations of the system for
the single support phase, we let (v1, v2, v3) =: v denote the
horizontal, vertical and rotational velocity of the (center of
mass of the) swing leg. These velocities are related to the rate
of change of the configuration variables q̇ by the Jacobian
matrix S(q), defined as:

S(q) =




1 0 dcom sin(q3)
0 1 −dcom cos(q3)
0 0 1



 , (11)

such that v = S(q)q̇. This allows to have the configuration
variables q coincide with those used in the V-SLIP model of
Section III. In particular, by defining p := Mv, with

M = diag(mh +mf ,mh +mf , Jcom) (12)

the mass matrix of the rigid body representing swing leg, the
dynamics during the single support phase can be derived in
terms of (q, p) as follows.
The kinetic energy is given by K = 1

2p
TM−1p, and we

derive the potential energy function V as

V = (mh +mf )g0(q2 − dcom sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function is given by H = K +
V , and we derive the dynamic equations in port-Hamiltonian
form by using the Boltzmann-Hamel equations [18], yielding:
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J =
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Again, the output y is dual to the input u, so that �u|y�
defines a power flow. The control input u = (u1, τ), i.e. the

(b) Simplified model

Figure 5.5: The V-SLIP model with swing leg—The V-SLIP model is extended with feet, modeled
as a point mass mf . Assuming that the swing leg is rigid, the swing leg dynamics can be modeled
as a link with mass m = mh +mf and a moment of inertia Jcom.

swing leg dynamics influence the gait of the V-SLIP model, the model is extended
to have feet, modeled as point masses with mass mf < mh. It is assumed that
the feet do not slip or bounce once in contact with the ground, so that during the
double support phase the V-SLIP dynamics (5.3) accurately describe the system
behavior. During the single support phase, assuming that the swing leg can be
considered a rigid link of length L0, the system can be modeled as shown in Fig-
ure 5.5. The foot mass is taken together with the hip mass to a combined mass
m = mh+mf at a distance dcom from the hip, and an associated moment of inertia
Jcom. A torque τ provides an additional input during this phase, so the orientation
q3 of the swing leg can be controlled. The transition from the single support phase
to the double support phase is now initiated when the foot touches the ground, i.e.
when

q2 = L0 sin(q3).

The dynamic equations for the double support phase are the same as for the V-
SLIP model, i.e. (5.3). With (q1, q2, q3) =: q, (p1, p2, p3) =: p, and the Hamiltonian
energy function H, the dynamic equations for the single support phase can be
derived using the Boltzmann-Hamel equations [15], yielding dynamic equations of
the form

d
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(5.4)

with u = (u1, τ) the controlled leg stiffness and swing leg torque. The derivation
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Figure 5.6: V-SLIP model with swing leg dynamics—The extended control strategy is able to
stabilize the system to a SLIP reference gait, despite the disturbance introduced by the dynamics
of the swing leg.

of the skew-symmetric matrix J and the input matrix B are explained in detail in
Chapter 11. It is noted that the pair (u, y) again defines a power port for control
action.

Let q∗3 be a reference function for the swing leg orientation, defined during the
time interval

tlo ≤ t < tlo + Tswing, (5.5)

with tlo the time instant of lift-off defined by (5.1), and Tswing the nominal duration
of the single support phase. Then, the result presented in Lemma 5.1 can be
extended as follows.

Lemma 5.2 (Swing Leg Control) Given reference state trajectories (q∗2 , q̇
∗
1 , q

∗
3),

define the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1,

h3 = q∗3 − q3.

A control strategy exists that, while considering the transitions between the single
and double support phases, realizes for some small ε1 > 0:

lim
t→∞

|q∗2(t)− q2(t)| < ε1,

and for some small ε2 > 0,

lim
t→∞

|q̇∗1(t)− q̇1(t)| < ε2,

and, during tlo ≤ t < tlo + Tswing, for some suitable δ > 0,

|q∗3(tlo + Tswing)− q3(tlo + Tswing)| < δ.
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The reader is referred to Chapter 11 for details on the derivation of the control
strategy. Figure 5.6 illustrates that the control strategy is indeed able to stabilize
the gait of the walker.

As can be seen from Figure 5.6, the swing leg is allowed to swing through the
ground, which is not realistic. To further refine the model, a knee is introduced, as
shown in Figure 5.7. The knee introduces an additional degree, allowing the leg to
be retracted during the single support phase, thus avoiding foot scuffing. Because
the knee introduces only a kinematic relation between the hip and the foot, the leg
configuration can be equivalently described by an orientation q3, corresponding to
the model depicted in Figure 5.5, and a length q4.

Under the same assumption of no slip or bouncing occurring in the foot con-
tact point, the V-SLIP dynamic equations (5.3) are still sufficient to describe the
system behavior during the double support phase. Defining q := (q1, q2, q3, q4),
p := (p1, p2, p3, p4), and the Hamiltonian energy function H, the dynamic equa-
tions for the single support phase take the form

d

dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�

∂H
∂q
∂H
∂p

�
,

(5.6)

where u = (u1, τ1, τ2), i.e. the controllable parts of the stance leg stiffness, and the
torques collocated with q3 and q4. The input matrix B is given by

B =





∂φ1

∂q1
0 0

∂φ1

∂q2
0 0

0 1 0
0 0 1




,

with
φ1 = − 1

2 (L0 − L1)
2.

The pair (u, y) defines again the control port. The reader is referred to Chapter 11
for further details on the derivation of the dynamic equations.

In addition to q∗3 , let q
∗
4 be a reference function for the swing leg length, defined

on the time interval (5.5). The result presented in Lemma 5.2 can be further
extended as follows.

Lemma 5.3 (Swing Leg Control with Leg Retraction) Given reference tra-
jectories (q∗2 , q̇

∗
1 , q

∗
3 , q

∗
4), define the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1,

h3 = q∗3 − q3,

h4 = q∗4 − q4.
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Fig. 8. The V-SLIP model with feet and knees—By adding an actuated
knee joint to the model of Section IV, the leg can be retracted during the
single support phase. This allows the leg to swing forward without scuffing
the ground. It is assumed that no slip or bouncing occurs in the foot contact
point of the stance leg.

swing leg motion is controlled as claimed by the proposed
control law. Note that the degree of freedom q3 is not defined
during the double support phase, and therefore h3 ≡ 0 during
this phase.

V. THE CONTROLLED V-SLIP MODEL
WITH RETRACTING SWING LEG DYNAMICS

In this Section, we further refine the model presented in
Section IV by adding a knee, as shown in Fig. 8. This allows
the swing leg to be retracted, so that it can be swung forward
without scuffing the ground. We derive in this Section the
dynamic equations for this model, and further extend the
controller.

A. System Dynamics
Similar to the model presented in Section IV, we will

assume that:
• no slip or bouncing occurs in the foot contact points;
• the spring are unilateral.

These assumptions allow to again use the double support phase
model used in Section III-A.
To avoid notational clutter due to goniometric relations, the

simplified model depicted in Fig. 9 is used. The simplification
is possible, because the introduction of the knee joint intro-
duces only a kinematic relation between the hip mass and the
foot mass, since these are located at the extremities of the
swing leg.
In deriving the dynamic equations for the single support

phase of this model, we define new coordinates as

z1 = (q1, q2, q3, q4) and z2 = (q1, q2, s1, s2) (15)

where
s1 = q1 − q4 cos(q3),

s2 = q2 − q4 sin(q3),
(16)

i.e. the position of the foot of the swing leg. We furthermore
define the tangent map Z = ∂z2/∂z1. Using this relation and

q1
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q 4
, τ

2

τ1mh

mf

k0 + u1

c1

Fig. 9. Model simplification—The configuration of the swing leg can be
equivalently described by a linear degree of freedom q4, corresponding to the
distance between the hip and the foot, and the orientation q3, analogous to
the model of Fig. 5. During the double support phase, the model is reduced
to the V-SLIP model, as shown in Fig. 3.

noting that z1 = q and thus that ż2 = Zq̇, we can derive the
mass matrix M(q) from the energy equality

1
2 q̇

TM(q)q̇ = 1
2 ż

T
2 M0ż2 =

1
2 q̇

TZTM0Zq̇, (17)

with M0 = diag(mh,mh,mf ,mf ).
By defining the momentum variables p := M(q)q̇, the

kinetic energy K = 1
2p

TM−1(q)p, and the potential energy
function V is found to be:

V = mhg0q2 +mfg0(q2 − q4 sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function H = K + V and the
dynamic equations in port-Hamiltonian form are given by

d
dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�
∂H
∂q
∂H
∂p

�
,

(18)

where u = (u1, τ1, τ2), i.e. the controllable parts of the stance
leg stiffness, and the torques collocated with q3 and q4. The
input matrix B is given by

B =





∂φ1

∂q1
0 0

∂φ1

∂q2
0 0

0 1 0
0 0 1




,

with
φ1 = − 1

2 (L0 − L1)
2.

B. Phase Transitions

Just as in the model described in Section IV, also in this
model we need to consider the different sets of configuration
variables in the single and double support phases. Therefore,
in the following the phase transition mappings are defined.
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the ground. It is assumed that no slip or bouncing occurs in the foot contact
point of the stance leg.
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Section IV by adding a knee, as shown in Fig. 8. This allows
the swing leg to be retracted, so that it can be swung forward
without scuffing the ground. We derive in this Section the
dynamic equations for this model, and further extend the
controller.
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assume that:
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• the spring are unilateral.
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duces only a kinematic relation between the hip mass and the
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distance between the hip and the foot, and the orientation q3, analogous to
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noting that z1 = q and thus that ż2 = Zq̇, we can derive the
mass matrix M(q) from the energy equality

1
2 q̇
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2 M0ż2 =
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with M0 = diag(mh,mh,mf ,mf ).
By defining the momentum variables p := M(q)q̇, the

kinetic energy K = 1
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TM−1(q)p, and the potential energy
function V is found to be:
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Then, the Hamiltonian energy function H = K + V and the
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where u = (u1, τ1, τ2), i.e. the controllable parts of the stance
leg stiffness, and the torques collocated with q3 and q4. The
input matrix B is given by

B =
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0 1 0
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,

with
φ1 = − 1

2 (L0 − L1)
2.

B. Phase Transitions

Just as in the model described in Section IV, also in this
model we need to consider the different sets of configuration
variables in the single and double support phases. Therefore,
in the following the phase transition mappings are defined.

(b) Simplified model

Figure 5.7: The V-SLIP model with retracting swing leg—The model is further extended with a
knee, allowing the leg to be retracted during the swing and thus avoid scuffing the floor.

A control strategy exists that, while considering the transitions between the single
and double support phases, realizes for some small ε1 > 0:

lim
t→∞

|q∗2(t)− q2(t)| < ε1,

and for some small ε2 > 0,

lim
t→∞

|q̇∗1(t)− q̇1(t)| < ε2,

and, during tlo ≤ t < tlo + Tswing, for some suitable δ1, δ2 > 0,

|q∗3(tlo + Tswing)− q3(tlo + Tswing)| < δ1

|q∗4(tlo + Tswing)− q4(tlo + Tswing)| < δ2

Chapter 11 provides more details on the derivation of the control strategy. Fig-
ure 5.8 illustrates the effectiveness of the control strategy.

5.4 Cost of Transport

The V-SLIP model was motivated by the energy-conserving properties of this
model. In particular, the control strategy of Lemma 5.1 is formulated in such a way
that, in nominal conditions, the natural dynamics of the SLIP model are repro-
duced, so that no control action is required. This is theoretically energy-efficient,
but in extending the model with feet, this property has been lost. However, since
the bipedal SLIP model is still anchored in the extended models, the control strate-
gies for the extended models are still energy-efficient, because they exploit these
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Figure 5.8: V-SLIP model with swing leg dynamics including leg retraction—The control strat-
egy is further extended to retract the leg during swing, thus avoiding foot-scuffing, while still
stabilizing the system to a SLIP reference gait.

embodies SLIP dynamics. This claim is illustrated by calculating the cost of trans-
port [23, 30]. The cost of transport C, as defined in [30], is readily obtained trough
the port-Hamiltonian formulation of the dynamic behavior (5.4) and (5.6):

C =
1

mtotalg0∆x

�

T
|�u|y�| dt,

where mtotal denotes the total mass, g0 the gravitational acceleration, and ∆x
the distance travelled during the time interval T . Since the V-SLIP model is
energy conservative, it can achieve C ≡ 0 in nominal conditions if the reference
gait exactly matches the natural dynamics of the system. When the swing leg
dynamics are included, the system is no long energy conservative. For the model
shown in Figure 5.5, C = 0.32, and for the model of Figure 5.7, C = 0.34. Both
these values are in the range of human cost of transport for various gaits [23]. This
shows that bipedal gait control based on variable stiffness actuation, based on the
template model shown in Figure 5.7, can serve as a template for energy-efficient
control strategies for bipedal robots.



CHAPTER 6

Conclusions

Variable stiffness actuators form a class of actuators characterized by the property
that their apparent output stiffness can be changed independently from the output
position. This is realized by a number of internal elastic elements, and a number of
internal degrees of freedom that determine how these elastic elements are perceived
at the actuator output. This enables a robot equipped with such actuators to adapt
to the environment by modifying their output impedance, while the integrated
elastic elements open possibilities for temporary energy storage.

This thesis investigated models and analysis methods for variable stiffness ac-
tuators, presented new control strategies, and explored the application of variable
stiffness actuation to bipedal locomotion. This chapter summarizes the results
obtained in these three research areas, and provides an outlook for future work.

6.1 Discussion and Conclusions

Modeling and Analysis of Variable Stiffness Actuators

A generic port-based model for variable stiffness actuators has been presented. It
was shown that this model can be applied to a variety of variable stiffness actuators
designs, thus providing a uniform model for this class of actuators. Based on
this model, an analysis method was developed, which provides insights on how
the kinematics of the actuator design determines the power flows between the
control port of the actuator, its internal elastic elements, and the environment.
In particular, it was shown how three different working principles, that are at the
basis of many variable stiffness actuator designs, perform in dynamically changing
the apparent output stiffness. Furthermore, it was shown that using a variable
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transmission ratio to implement the stiffness regulation enables energy-efficient
actuation by using the internal elastic elements for energy storage.

In deriving the model, a number of simplifying assumptions were made, which
put the focus purely on the actuator kinematics. Furthermore, not all actuator
designs can be readily captured by the model, due to strong nonlinearities in the
design. Nonetheless, the model and the power flow analysis provided the basis
for a comparison of energy-efficiency of actuator designs. Important insights in
actuator design principles were gained, which resulted in paradigms for designing
energy-efficient variable stiffness actuators.

Energy-Efficient Control Strategies

Based on the generic model for variable stiffness actuators, two novel control strate-
gies have been presented, which exploited the energy storage capabilities of the
internal elastic elements of the actuator. It was shown that it is possible to use
these elastic elements as temporary energy storage when negative work is done at
the actuator output. Specifically, one control strategy regulates the power flow
through the control port, dependent on the amount of elastic energy available,
while the second control strategy takes a resonance-like approach to controlling
periodic motions by embodying the desired behavior as much as possible into the
passive dynamics of the actuator.

Both control strategies have been demonstrated in numerical simulations, using
simple models of variable stiffness actuators. As such, their practical applicability
has not yet been proven. Therefore, these control strategies should be seen as a
proof-of-concept, providing a basis for further development.

Bipedal Locomotion with Variable Stiffness Actuation

The bipedal spring-loaded inverted pendulum (SLIP) model, consisting of a point
mass and massless telescopic springs representing the legs, accurately reproduces
human gait characteristics. However, the model only captures autonomous, steady-
state walking behavior. In this thesis it was proposed to make the leg stiffness
variable (the V-SLIP model, for Variable SLIP), mimicking the human muscu-
loskeletal capabilities, to provide the model with control inputs. Furthermore, a
control strategy was presented that significantly improves the robustness of the gait
against external disturbances, while maintaining the energy-conserving properties
of the model.

By extending the V-SLIP model to include swing leg dynamics, a more realistic
model was derived. The control strategy for the V-SLIP model has been extended
to control the swing leg motion. This has shown that robust and energy-efficient
locomotion is achievable using variable stiffness actuation. The extended model
and corresponding control strategy provide a template for further research in this
direction. A first attempt of applying these control strategies to an experimental
setup are described in Appendix A.
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6.2 Recommendations for Future Work

While this thesis aims to provide a complete line of research, the research in the
field of variable stiffness actuation is far from finished. Variable stiffness actuators
and their applications is a fairly new field, with many open questions. In the
context of this thesis, a number of questions stand out, providing leads for future
work.

Modeling and Analysis

• This thesis presented a generic port-based model, and it was shown that a
large set of variable stiffness actuator designs can be fitted in this model
by categorizing these designs on basis of their working principles. However,
there are many more actuator designs that are not based on one of the three
working principles identified in Section 2.2. Further research must reveal if
these designs can also be accurately represented in the model, and if the
power flow analysis can be applied.

• In the derivation of the port-based model, the focus has been on the working
principles of the variable stiffness actuators. As such, internal friction, inertia,
and other non-ideal effects have not been incorporated in the model. The
model should be extended to incorporate these effects, and their influence of
the actuator performance should be investigated in the context of the power
flow analysis.

Control Methods

• The effectiveness of the control methods presented in this thesis has been
demonstrated in numerical simulations. Experimental validation of these
methods is an essential next step in their application to energy-efficient ac-
tuation methods using variable stiffness actuators.

• The control method presented in Section 4.1 does allow negative work to be
done by one or more of the internal degrees of freedom. Nonetheless, it was
shown that the control strategy is energy efficient. However, it should be
investigated how this situation can be improved, for example by designing
mechanisms that kinematically link internal degrees of freedom in a way that
altogether avoids that negative work is done.

• The control method proposed in Section 4.2 is based on a coordinate trans-
formation, relating the configuration of the internal degrees of freedom to the
apparent output stiffness and equilibrium position of the actuator. In deriv-
ing the control strategy and the optimization criterion, it has been assumed
that this change of coordinates is constant, which allowed the minimization
of the proposed cost criterion. It should be investigated how this approach
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can be applied to variable stiffness actuator designs for which this change of
coordinates is not constant.

Bipedal Locomotion

• Humans are capable of robust and energy-efficient locomotion on a wide va-
riety of terrains. Prior research and the work presented in this thesis suggest
that the compliancy of the human musculoskeletal system plays an impor-
tant role in this, but further research is required to gain more knowledge. In
particular, a better biomechanical understanding should be developed in how
humans achieve energy-efficient walking on different terrains, while maintain-
ing robust gaits.

• The template model of a bipedal walker, derived in Chapter 5, and the cor-
responding control strategy, assume walking in the sagittal plane. Extension
to 3D walking is a logical next step, possibly also including other control
approaches like foot placement strategies.

Other Recommendations

• Varying stiffness in real-time introduces very complex dynamics that are not
yet fully understood. If variable stiffness actuators are to be applied reli-
ably, a better understanding of these dynamics is required. In particular, if
variable stiffness actuators are used in interacting robotic systems, it must
be understood how stiffness variations influence the global dynamic behavior
and the interaction behavior, and how nonlinear control techniques can be
applied to shape these behaviors.

• Many of the ideas and concepts described in this thesis are theoretical in
nature, demonstrated in numerical simulations. While many prototype vari-
able stiffness actuators have been presented in literature, these actuators are
still under development. In particular, dynamically changing the actuator
output stiffness is difficult to achieve in highly-dynamic systems, mostly due
to friction. Therefore, engineering effort should be directed to realizing more
advanced prototypes, focussing on performance and reliability.
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Energy-Efficient Variable Stiffness Actuators
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7.1 Introduction

Humans can perform tasks in an unstructured and unknown environment, because,
by tensioning the muscles, they can adjust the stiffness of their joints to a level
appropriate for the task and the environment. In contrast, robots do not have this
capability, which, in general, restricts them to perform predefined tasks in struc-
tured environments. However, in emerging robotic applications, in which robots
need to cooperate with humans, such as prosthetics, rehabilitation devices, wear-
able and social robots, traditional stiff robot actuation is not suitable anymore. In
particular, when the robot interacts with an unknown environment, instability can
occur when the actuation of the robot is too stiff, leading to damage or even to
injuries if humans are involved [28, 29].

Robots can be given similar capabilities as humans by using variable stiffness
actuators. Variable stiffness actuators are characterized by the property that their
apparent output stiffness, and thus the stiffness of the actuated joint, can be
changed independently from the actuator output position. This is achieved by
means of a number of internal compliant elements, such as springs, and a number
of internal degrees of freedom that determine how the compliance is sensed at the
actuator output. The internal mechanical compliance is important in realizing safe
human-robot interaction, because it decouples the actuator inertia from the actu-
ator output [5]. Moreover, in case of an impact, the elastic elements can absorb
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the impact energy, which gives the controller time to respond to the collision [13].
The energy storing properties of the elastic elements can also be used to achieve
energy efficient actuation, by storing negative work [52, 51, 55].

Considering the wide range of possible applications of variable stiffness actua-
tors, research effort in designing such actuators is increasing and various designs
have been presented in the literature. In applications where the variable out-
put stiffness is only considered for planned interaction with the environment, the
compliance can be emulated by software, i.e., active compliance or impedance con-
trol [45]. On the other hand, passive (i.e., mechanical) compliance can be imple-
mented in many ways. In the ‘Jack Spring’TM actuator [32], the apparent output
stiffness is varied by changing the number of active coils of the internal spring.
Other actuators, e.g., VSA-II [46] and VS-Joint [75], change the apparent output
stiffness by varying the pretension of the internal nonlinear springs. Other actua-
tors, including the vsaUT, presented in earlier work [68], [64], the AwAS [34], the
AwAS-II [35] and the HDAU [39], change the apparent output stiffness by changing
the transmission ratio between the internal linear springs and the actuator output.
In [9], the configuration of permanent magnets is used to emulate the compliance.

The paper is organized as follows. In Section 7.2, we give a motivation for our
work, which aims at the realization of a new class of energy efficient variable stiffness
actuators. In Section 7.3, we briefly introduce the port-based modeling framework,
and, in Section 7.4, we use it to derive a generic port-Hamiltonian model for vari-
able stiffness actuators. From the analysis of the model, in Section 7.5, we derive
a number of kinematic properties that variable stiffness actuators should have in
order to be energy efficient. We present a conceptual design and a prototype real-
ization, that satisfies these properties, in Section 7.6. Simulation and experimental
results, presented in Section 7.7, validate the working concept. In Section 7.8, a
discussion on the results is given and concluding remarks are drawn in Section 7.9.

7.2 Motivation

In this work, we consider a class of variable stiffness actuators that have internally
a number of elastic elements, usually springs, and a number of actuated degrees
of freedom. It is this mechanical characteristic that allows to change the appar-
ent output stiffness of the actuator independently from its output position. The
apparent output stiffness K is defined as the ratio of the infinitesimal change of
the actuator output force δF as a result of an infinitesimal displacement of the
actuator output position δr, i.e.,

K :=
δF

δr
(7.1)

If we consider a variable stiffness actuator as a collection of elastic elements and
ideal actuated degrees of freedom, i.e., the degrees of freedom are without mass
and without friction, then the electrical energy supplied to the internal actuators



53

can either be used to do work at the actuator output, or it can be internally
stored in the elastic elements. For example, the energy is stored when the internal
degrees of freedom are used to change the pretension of internal springs to achieve a
different apparent output stiffness. However, in this case, the energy is irreversibly
stored, in the sense that it cannot be used to do work at the output. This means
that changing the apparent output stiffness has a negative impact on the energy
efficiency of the actuator, as already observed in [62].

In robotic applications in which energy efficiency is of particular concern, all
power supplied to a variable stiffness actuator should be used only to do work at the
actuator output, and not to change the apparent output stiffness. Following this
argument, by energy efficient variable stiffness actuators, we mean actuators for
which the apparent output stiffness can be changed without injecting or extracting
energy to and from the internal elastic elements.

The aim of this work is to find which kinematic properties variable stiffness
actuators must satisfy to be energy efficient, according to the definition above.
We use the port-based approach as a tool for this search, because it reveals how
the kinematics determine the power flows inside the actuator, i.e., the power flows
between the internal degrees of freedom, the internal elastic elements, and the
actuator output. Moreover, the state of the elastic elements, from which we derive
the definition of energy efficiency, is explicitly described in the model and can be
intuitively used to derive the requirements on the kinematic structure. The analysis
of the port-based model allows for the introduction of a conceptual design based
on these requirements and for the realization of a prototype.

7.3 Port-based Modeling Framework

In this Section, we intend to briefly introduce the port-based modeling framework,
which we use with the aim of providing more insights in the energy flows in variable
stiffness actuators. For a more comprehensive treatment of port-based modeling
and bond graphs, the reader is referred to e.g. [14, 50].

7.3.1 Port-based Modeling

Any physical system can be modeled in a port-based framework. A key element in
this modeling framework is the concept of power conjugate variables, called efforts
and flows. In the mechanical domain, flows are physically interpreted as velocities
and efforts as forces. The dual product �e|f� of an effort e and a flow f yields
power. A pair of effort and flow variables thus defines a power flow.

If f is an element of a real vector space V, and e is an element of the dual vector
space1 V∗, then we can define a subspace D ⊂ V ×V∗, called Dirac structure, such

1Under coordinate transformations, efforts behave as co-vectors. However, for notational con-
venience, we write them as vectors in this work.
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actuator output position δr, i.e.,

K :=
δF

δr
(1)

If we consider a variable stiffness actuator as a collection
of elastic elements and ideal actuated degrees of freedom, i.e.,
the degrees of freedom are without mass and without friction,
then the electrical energy supplied to the internal actuators
can either be used to do work at the actuator output, or it
can be internally stored in the elastic elements. For example,
the energy is stored when the internal degrees of freedom are
used to change the pretension of internal springs to achieve a
different apparent output stiffness. However, in this case, the
energy is irreversibly stored, in the sense that it cannot be
used to do work at the output. This means that changing the
apparent output stiffness has a negative impact on the energy
efficiency of the actuator, as already observed in [18].
In robotic applications in which energy efficiency is of

particular concern, all power supplied to a variable stiffness
actuator should be used only to do work at the actuator output,
and not to change the apparent output stiffness. Following this
argument, by energy efficient variable stiffness actuators, we
mean actuators for which the apparent output stiffness can be
changed without injecting or extracting energy to and from
the internal elastic elements.
The aim of this work is to find which kinematic properties

variable stiffness actuators must satisfy to be energy efficient,
according to the definition above. We use the port-based
approach as a tool for this search, because it reveals how the
kinematics determine the power flows inside the actuator, i.e.,
the power flows between the internal degrees of freedom, the
internal elastic elements, and the actuator output. Moreover,
the state of the elastic elements, from which we derive the
definition of energy efficiency, is explicitly described in the
model and can be intuitively used to derive the requirements on
the kinematic structure. The analysis of the port-based model
allows for the introduction of a conceptual design based on
these requirements and for the realization of a prototype.

III. PORT-BASED MODELING FRAMEWORK

In this Section, we intend to briefly introduce the port-
based modeling framework, which we use with the aim
of providing more insights in the energy flows in variable
stiffness actuators. For a more comprehensive treatment of
port-based modeling and bond graphs, the reader is referred
to e.g. [19], [20].

A. Port-based Modeling

Any physical system can be modeled in a port-based
framework. A key element in this modeling framework is the
concept of power conjugate variables, called efforts and flows.
In the mechanical domain, flows are physically interpreted as
velocities and efforts as forces. The dual product �e|f� of an
effort e and a flow f yields power. A pair of effort and flow
variables thus defines a power flow.

D

R: dissipation

interaction

control

C: storage

Fig. 1. Network structure of a generic physical system - The Dirac structure
D defines a power continuous connection between the ports. Internal energy
storage is represented by the C-element, and energy dissipation by the R-
element. The system interacts with the environment via the control port and
the interaction port.

If f is an element of a real vector space V , and e is an
element of the dual vector space1 V∗, then we can define a
subspace D ⊂ V × V∗, called Dirac structure, such that

�e|f� = 0, ∀ (f, e) ∈ D (2)

A Dirac structure defines a network topology, i.e., a distribu-
tion of power flows among the ports of the structure, and from
(2) it follows that a Dirac structure is power continuous. Note
that a Dirac structure is allowed to vary in time, as long as
the power continuity is preserved.
Using a Dirac structure, we can model the behavior of

the system by making explicit its network topology. The
generic network topology is shown in Figure 1, where four
separate power ports can be distinguished. The interaction
port is available for interaction with the environment, i.e., (a
composition of) other systems. The associated port variables
are denoted by the pair (fI , eI). The control port is used for
control action, with associated port variables (fC , eC). The
port variables of the storage port are denoted by the pair
(fS , eS) and are associated with the internal energy storage of
the system, represented by a Hamiltonian energy function H .
At this port, the power conjugate variables satisfy the energy
balance

dH
dt

= �eS |fS� (3)

Energy is dissipated via the dissipation port, with associated
port variables (fR, eR) satisfying

�eR|fR� ≤ 0 (4)

Often, a linear model of the dissipative element is used, and
then the port variables are related as

fR = −ReR (5)

with a positive semi-definite matrix R = RT ≥ 0.
The Dirac structure D defines the power continuous port

interconnection. From the definition of a Dirac structure (2),
it follows that

�eS |fS�+ �eR|fR�+ �eI |fI�+ �eC |fC� = 0

1Under coordinate transformations, efforts behave as co-vectors. However,
for notational convenience, we write them as vectors in this work.

Figure 7.1: Network structure of a generic physical system—The Dirac structure D defines a
power continuous connection between the ports. Internal energy storage is represented by the
C-element, and energy dissipation by the R-element. The system interacts with the environment
via the control port and the interaction port.

that
�e|f� = 0, ∀ (f, e) ∈ D (7.2)

A Dirac structure defines a network topology, i.e., a distribution of power flows
among the ports of the structure, and from (7.2) it follows that a Dirac structure
is power continuous. Note that a Dirac structure is allowed to vary in time, as long
as the power continuity is preserved.

Using a Dirac structure, we can model the behavior of the system by making
explicit its network topology. The generic network topology is shown in Figure 7.1,
where four separate power ports can be distinguished. The interaction port is avail-
able for interaction with the environment, i.e., (a composition of) other systems.
The associated port variables are denoted by the pair (fI , eI). The control port is
used for control action, with associated port variables (fC , eC). The port variables
of the storage port are denoted by the pair (fS , eS) and are associated with the in-
ternal energy storage of the system, represented by a Hamiltonian energy function
H. At this port, the power conjugate variables satisfy the energy balance

dH

dt
= �eS |fS� (7.3)

Energy is dissipated via the dissipation port, with associated port variables (fR, eR)
satisfying

�eR|fR� ≤ 0 (7.4)

Often, a linear model of the dissipative element is used, and then the port variables
are related as

fR = −ReR (7.5)

with a positive semi-definite matrix R = RT ≥ 0.
The Dirac structure D defines the power continuous port interconnection. From

the definition of a Dirac structure (7.2), it follows that

�eS |fS�+ �eR|fR�+ �eI |fI�+ �eC |fC� = 0
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Substituting (7.3), we have

dH

dt
= −�eR|fR� − �eI |fI� − �eC |fC� (7.6)

i.e., the rate of change of the internal energy is determined by the amount of energy
dissipated, and the power flow through the control and the interaction ports. It
follows that the system is passive with respect to the input ports, i.e., the control
port and the interaction port.

7.3.2 Input/Output Representation of Port-Hamiltonian
Systems

The Dirac structure representation of a system, as given in the previous Section,
does not consider causality. This representation is close to the physical reality, since
causality is an artificial concept. However, often it is more convenient to consider
a causal representation of the system dynamics, with respect to the input port, i.e.,
the composition of the interaction port and the control port. Therefore, we define
the system state manifold X , with coordinates x, and assume that it is a Poisson
manifold and satisfies the integrability conditions [50]. Under these conditions, we
can derive the input/output representation of the port-Hamiltonian system.

The Hamiltonian energy function H : X → R is defined as a smooth function
on the state manifold X . In addition, we consider the port interaction space Wx,
which is a vector bundle over X . The power conjugate variables (u, y) of the input
port then belong to Wx × W ∗

x . Let φx denote a linear map from Wx to TxX
and φ∗

x its dual, and let Jx denote a Poisson tensorfield, which defines a fibre
bundle morphism from T ∗

xX to TxX . The port-Hamiltonian system can then be
represented as

ẋ = Jx dH(x) + φx u

y = φ∗
x dH(x)

(7.7)

where dH(x) denotes the differential of the Hamiltonian energy function H(x).
The coordinate function x is the state of the system, and the port variables u and
y can be considered as inputs and outputs of the system, respectively.

If we choose local coordinates on X , we can write (7.7) as

ẋ = J(x)
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(7.8)

where the skew-symmetric matrix J(x) represents the network topology between
the ports, and thus represents the Dirac structure. In local coordinates, it is also
more apparent how the dissipative element defined in (7.5) can be included into
the system dynamics. Indeed, by letting the pair (u, y) only represent the ports by
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Substituting (3), we have
dH
dt

= −�eR|fR� − �eI |fI� − �eC |fC� (6)

i.e., the rate of change of the internal energy is determined by
the amount of energy dissipated, and the power flow through
the control and the interaction ports. It follows that the system
is passive with respect to the input ports, i.e., the control port
and the interaction port.

B. Input/Output Representation of Port-Hamiltonian Systems
The Dirac structure representation of a system, as given

in the previous Section, does not consider causality. This
representation is close to the physical reality, since causality is
an artificial concept. However, often it is more convenient to
consider a causal representation of the system dynamics, with
respect to the input port, i.e., the composition of the interaction
port and the control port. Therefore, we define the system state
manifoldX , with coordinates x, and assume that it is a Poisson
manifold and satisfies the integrability conditions [20]. Under
these conditions, we can derive the input/output representation
of the port-Hamiltonian system.
The Hamiltonian energy function H : X → R is defined

as a smooth function on the state manifold X . In addition,
we consider the port interaction space Wx, which is a vector
bundle over X . The power conjugate variables (u, y) of the
input port then belong to Wx × W ∗

x . Let φx denote a linear
map from Wx to TxX and φ∗

x its dual, and let Jx denote
a Poisson tensorfield, which defines a fibre bundle morphism
from T ∗

xX to TxX . The port-Hamiltonian system can then be
represented as

ẋ = Jx dH(x) + φx u

y = φ∗
x dH(x)

(7)

where dH(x) denotes the differential of the Hamiltonian
energy function H(x). The coordinate function x is the state
of the system, and the port variables u and y can be considered
as inputs and outputs of the system, respectively.
If we choose local coordinates on X , we can write (7) as

ẋ = J(x)
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(8)

where the skew-symmetric matrix J(x) represents the network
topology between the ports, and thus represents the Dirac
structure. In local coordinates, it is also more apparent how
the dissipative element defined in (5) can be included into
the system dynamics. Indeed, by letting the pair (u, y) only
represent the ports by which the system interacts with other
systems, i.e., the composition of the control port and the
interaction port, the system dynamics are given by

ẋ =
�
J(x)−R(x)

�∂H
∂x

(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(9)

with R(x) = RT (x) ≥ 0 a positive semi-definite matrix.

A
e

f
B

Fig. 2. Interconnection of two port-Hamiltonian systems A and B - The
power flow �e|f� is defined positive in the direction of the bond, i.e., the half
arrow.

D

eR fR

R

eI

fI

eC fC

eS

fS
C

Fig. 3. Bond graph representation of a port-Hamiltonian system - The D
is the Dirac structure, the C-element represents energy storage and the R-
element energy dissipation.

C. Bond Graph Representation
The concept of power conjugate variables, and thus of power

flows, lends itself for a compact graphical representation. In
Figure 2, the interconnection of two port-Hamiltonian systems
A and B is shown. The power flow between the two systems
is represented by a bond, i.e., the half arrow. In particular,
the power flow �e|f� is defined positive in the direction of
the half arrow. In this example, the systems A and B can
be port-Hamiltonian systems, as given in (9), or, on a more
conceptual level, power continuous interconnection structures
as defined in (2), energy storing elements as defined in (3) or
energy dissipating elements as defined in (4).
Using the concept of bond graphs, we can graphically rep-

resent the concept of a port-Hamiltonian system of Figure 1,
as shown in Figure 3, in which the multi-bonds indicate a
multidimensional interconnection. Note that in order to comply
with the power continuity constraint (2), all bonds must have
the same orientation with respect to the Dirac structure.

IV. VARIABLE STIFFNESS ACTUATORS AS
PORT-HAMILTONIAN SYSTEMS

With the aim of getting more insights into the power flows
between the variable stiffness actuator, the controller, and the
actuator output, in this Section, we present a port based model
of variable stiffness actuators. This model was first presented
in [12], but we provide here an extension to include a load,
and a more detailed analysis of its properties and behavior.

A. Variable Stiffness Port
To get a better understanding of variable stiffness actuators,

we first model the concept of a variable stiffness port. In this
concept, the behavior of a linear spring is modulated by an
external variable, so that at the port the spring appears to have
a variable stiffness.

Figure 7.2: Interconnection of two port-Hamiltonian systems A and B - The power flow �e|f� is
defined positive in the direction of the bond, i.e., the half arrow.

which the system interacts with other systems, i.e., the composition of the control
port and the interaction port, the system dynamics are given by

ẋ =
�
J(x)−R(x)

�∂H
∂x

(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(7.9)

with R(x) = RT (x) ≥ 0 a positive semi-definite matrix.

7.3.3 Bond Graph Representation

The concept of power conjugate variables, and thus of power flows, lends itself
for a compact graphical representation. In Figure 7.2, the interconnection of two
port-Hamiltonian systems A and B is shown. The power flow between the two
systems is represented by a bond, i.e., the half arrow. In particular, the power
flow �e|f� is defined positive in the direction of the half arrow. In this example,
the systems A and B can be port-Hamiltonian systems, as given in (7.9), or, on
a more conceptual level, power continuous interconnection structures as defined in
(7.2), energy storing elements as defined in (7.3) or energy dissipating elements as
defined in (7.4).

Using the concept of bond graphs, we can graphically represent the concept
of a port-Hamiltonian system of Figure 7.1, as shown in Figure 7.3, in which the
multi-bonds indicate a multidimensional interconnection. Note that in order to
comply with the power continuity constraint (7.2), all bonds must have the same
orientation with respect to the Dirac structure.

7.4 Variable Stiffness Actuators as Port-Hamilto-
nian Systems

With the aim of getting more insights into the power flows between the variable stiff-
ness actuator, the controller, and the actuator output, in this Section, we present
a port based model of variable stiffness actuators. This model was first presented
in [68], but we provide here an extension to include a load, and a more detailed
analysis of its properties and behavior.
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Substituting (3), we have
dH
dt

= −�eR|fR� − �eI |fI� − �eC |fC� (6)

i.e., the rate of change of the internal energy is determined by
the amount of energy dissipated, and the power flow through
the control and the interaction ports. It follows that the system
is passive with respect to the input ports, i.e., the control port
and the interaction port.

B. Input/Output Representation of Port-Hamiltonian Systems
The Dirac structure representation of a system, as given

in the previous Section, does not consider causality. This
representation is close to the physical reality, since causality is
an artificial concept. However, often it is more convenient to
consider a causal representation of the system dynamics, with
respect to the input port, i.e., the composition of the interaction
port and the control port. Therefore, we define the system state
manifoldX , with coordinates x, and assume that it is a Poisson
manifold and satisfies the integrability conditions [20]. Under
these conditions, we can derive the input/output representation
of the port-Hamiltonian system.
The Hamiltonian energy function H : X → R is defined

as a smooth function on the state manifold X . In addition,
we consider the port interaction space Wx, which is a vector
bundle over X . The power conjugate variables (u, y) of the
input port then belong to Wx × W ∗

x . Let φx denote a linear
map from Wx to TxX and φ∗

x its dual, and let Jx denote
a Poisson tensorfield, which defines a fibre bundle morphism
from T ∗

xX to TxX . The port-Hamiltonian system can then be
represented as

ẋ = Jx dH(x) + φx u

y = φ∗
x dH(x)

(7)

where dH(x) denotes the differential of the Hamiltonian
energy function H(x). The coordinate function x is the state
of the system, and the port variables u and y can be considered
as inputs and outputs of the system, respectively.
If we choose local coordinates on X , we can write (7) as

ẋ = J(x)
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(8)

where the skew-symmetric matrix J(x) represents the network
topology between the ports, and thus represents the Dirac
structure. In local coordinates, it is also more apparent how
the dissipative element defined in (5) can be included into
the system dynamics. Indeed, by letting the pair (u, y) only
represent the ports by which the system interacts with other
systems, i.e., the composition of the control port and the
interaction port, the system dynamics are given by

ẋ =
�
J(x)−R(x)

�∂H
∂x

(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(9)

with R(x) = RT (x) ≥ 0 a positive semi-definite matrix.

A
e

f
B

Fig. 2. Interconnection of two port-Hamiltonian systems A and B - The
power flow �e|f� is defined positive in the direction of the bond, i.e., the half
arrow.
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Fig. 3. Bond graph representation of a port-Hamiltonian system - The D
is the Dirac structure, the C-element represents energy storage and the R-
element energy dissipation.

C. Bond Graph Representation
The concept of power conjugate variables, and thus of power

flows, lends itself for a compact graphical representation. In
Figure 2, the interconnection of two port-Hamiltonian systems
A and B is shown. The power flow between the two systems
is represented by a bond, i.e., the half arrow. In particular,
the power flow �e|f� is defined positive in the direction of
the half arrow. In this example, the systems A and B can
be port-Hamiltonian systems, as given in (9), or, on a more
conceptual level, power continuous interconnection structures
as defined in (2), energy storing elements as defined in (3) or
energy dissipating elements as defined in (4).
Using the concept of bond graphs, we can graphically rep-

resent the concept of a port-Hamiltonian system of Figure 1,
as shown in Figure 3, in which the multi-bonds indicate a
multidimensional interconnection. Note that in order to comply
with the power continuity constraint (2), all bonds must have
the same orientation with respect to the Dirac structure.

IV. VARIABLE STIFFNESS ACTUATORS AS
PORT-HAMILTONIAN SYSTEMS

With the aim of getting more insights into the power flows
between the variable stiffness actuator, the controller, and the
actuator output, in this Section, we present a port based model
of variable stiffness actuators. This model was first presented
in [12], but we provide here an extension to include a load,
and a more detailed analysis of its properties and behavior.

A. Variable Stiffness Port
To get a better understanding of variable stiffness actuators,

we first model the concept of a variable stiffness port. In this
concept, the behavior of a linear spring is modulated by an
external variable, so that at the port the spring appears to have
a variable stiffness.

Figure 7.3: Bond graph representation of a port-Hamiltonian system—The D is the Dirac struc-
ture, the C-element represents energy storage and the R-element energy dissipation. 4
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Fig. 4. Model of a variable stiffness port - The external variable n
modulates the transformer MTF and, therefore, determines how the linear
spring, represented by the C-element with elastic constant k, is sensed by the
load.

The concept is shown, using bond graphs, in Figure 4. The
C-element represents a linear spring and, therefore, a storage
of elastic energy. Let s denote the state of the spring, i.e., its
elongation or compression, then the elastic energy is given by
Hs(s) =

1
2ks

2, where k is the elastic constant of the spring.
The power conjugate variables are

fS = ṡ, eS =
∂Hs

∂s
(s) (10)

The interaction port is characterized by the power conjugate
variables (fI , eI), corresponding to the rate of change of the
actuator output position r and the generated output force F ,
i.e., (ṙ, F ). The storage element and the interaction port are
connected by means of a Dirac structure, realized by the
combination of aMTF-element, i.e., a modulated transformer,
and a 1-junction, a common flow connection.
The behavior of the MTF-element is described by the

relations
fS = n f̄I

ēI = n eS
(11)

where n ∈ R+ is the modulation variable. The MTF-element
is power continuous, i.e., �ēI |f̄I� = �eS |fS�. The behavior of
the 1-junction is given by

f̄I = fI (= ṙ)

ēI = −eI (= −F )
(12)

Combining (10), (11) and (12), we can write

ṡ = fS = n fI (= n ṙ)

eI = −n eS = −n
∂Hs

∂s
= −n k s (= F )

(13)

By considering infinitesimal changes in the actuator output
force and position, from (13), we obtain that

δF = n2k δr

Using the definition of the stiffness given in (1), we obtain
that the apparent output stiffness, as it is sensed by the load,
is given by

K = n2k

It is observed that the apparent output stiffness is the constant
stiffness of the spring, modulated by the external variable n.
Thus, the output behavior can be modulated by changing n
appropriately. Moreover, since n is an external variable and not
a power variable, the output stiffness is changed in an energy
free way, i.e., the energy stored in the spring is not changed
due to modulation of n. It is this kind of behavior we wish to

achieve with a variable stiffness actuator. However, it should
be noted that, in this model, the maximum energy flow through
the interaction port is limited by the initial energy present in
the storage element. Therefore, in order to derive a model for
an actuator with variable stiffness port behavior, a model with
an additional power port is needed, so that additional energy
can be supplied to do work on the load.

B. Variable Stiffness Actuators

In deriving a generic model for variable stiffness actuators,
without loss of generality, we consider that:

• the actuator has a number ns of internal elastic elements,
described by state variables s and energy function He(s),
which describes the storage of elastic energy;

• internally, there are a number nq ≥ ns of actuated degrees
of freedom, with configuration variables q;

• the stiffness K , sensed at the actuator output port, is
determined by the intrinsic properties, the state of the
elastic elements and by the configuration of the internal
degrees of freedom.

Moreover, in our model, internal friction and inertia are
neglected, since the focus of the analysis is on the working
principles of variable stiffness actuators and not on the opti-
mization of the implementation.
In Figure 5, a bond graph representation of a generic

model of a variable stiffness actuator is shown. In comparison
with the model shown in Figure 4, some differences can be
observed. The C-element is now multidimensional and its port
behavior is characterized by power conjugate variables

fS = ṡ, eS =
∂He

∂s
(s) (14)

where He(s) is the storage of the elastic energy due to the
internal elastic elements. The MTF-element and 1-junction
have been replaced by a generic Dirac structure, which deter-
mines how the power is distributed between the C-element,
the interaction or output port (fI , eI), and the control port
(fC , eC). In particular, the output port is characterized by
two power conjugate variables, which correspond to (ṙ, F ),
i.e., the rate of change of the actuator output position r
and the force F that the actuator exerts on the load. The
control port is characterized by two power conjugate variables,
which correspond to (q̇, τ), i.e., the rate of change of the
configuration of the internal degrees of freedom q and the
torque τ generated by them.
Note that, via the control port, the configuration of the

internal degrees of freedom q is controlled, which, together
with the actuator output position r, determine the behavior
of the Dirac structure. Using the internal degrees of freedom,
power can be used to do work at the output port, while at the
same time the apparent output stiffness can be changed.
Since the Dirac structure realizes a power continuous inter-

connection of the ports, it defines a constrained relation be-
tween the power conjugate variables. This constrained relation

Figure 7.4: Model of a variable stiffness port—The external variable n modulates the transformer
MTF and, therefore, determines how the linear spring, represented by the C-element with elastic
constant k, is sensed by the load.

7.4.1 Variable Stiffness Port

To get a better understanding of variable stiffness actuators, we first model the
concept of a variable stiffness port. In this concept, the behavior of a linear spring
is modulated by an external variable, so that at the port the spring appears to
have a variable stiffness.

The concept is shown, using bond graphs, in Figure 7.4. The C-element repre-
sents a linear spring and, therefore, a storage of elastic energy. Let s denote the
state of the spring, i.e., its elongation or compression, then the elastic energy is
given by Hs(s) =

1
2ks

2, where k is the elastic constant of the spring. The power
conjugate variables are

fS = ṡ, eS =
∂Hs

∂s
(s) (7.10)

The interaction port is characterized by the power conjugate variables (fI , eI),
corresponding to the rate of change of the actuator output position r and the
generated output force F , i.e., (ṙ, F ). The storage element and the interaction
port are connected by means of a Dirac structure, realized by the combination of
a MTF-element, i.e., a modulated transformer, and a 1-junction, a common flow
connection.
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The behavior of the MTF-element is described by the relations

fS = n f̄I

ēI = n eS
(7.11)

where n ∈ R+ is the modulation variable. The MTF-element is power continuous,
i.e., �ēI |f̄I� = �eS |fS�. The behavior of the 1-junction is given by

f̄I = fI (= ṙ)

ēI = −eI (= −F )
(7.12)

Combining (7.10), (7.11) and (7.12), we can write

ṡ = fS = n fI (= n ṙ)

eI = −n eS = −n
∂Hs

∂s
= −nk s (= F )

(7.13)

By considering infinitesimal changes in the actuator output force and position, from
(7.13), we obtain that

δF = n2k δr

Using the definition of the stiffness given in (7.1), we obtain that the apparent
output stiffness, as it is sensed by the load, is given by

K = n2k

It is observed that the apparent output stiffness is the constant stiffness of the
spring, modulated by the external variable n. Thus, the output behavior can be
modulated by changing n appropriately. Moreover, since n is an external variable
and not a power variable, the output stiffness is changed in an energy free way, i.e.,
the energy stored in the spring is not changed due to modulation of n. It is this kind
of behavior we wish to achieve with a variable stiffness actuator. However, it should
be noted that, in this model, the maximum energy flow through the interaction
port is limited by the initial energy present in the storage element. Therefore, in
order to derive a model for an actuator with variable stiffness port behavior, a
model with an additional power port is needed, so that additional energy can be
supplied to do work on the load.

7.4.2 Variable Stiffness Actuators

In deriving a generic model for variable stiffness actuators, without loss of gener-
ality, we consider that:

• the actuator has a number ns of internal elastic elements, described by state
variables s and energy function He(s), which describes the storage of elastic
energy;
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Fig. 5. Generalized model of a variable stiffness actuator - The D is the Dirac
structure, the internal elastic elements are represented by the multidimensional
C-element, described by the energy function He(s). The internal degrees of
freedom are actuated via the control port (fC , eC), while the interconnection
with the load is via the output port (fI , eI).

can be represented in a matrix expression as



fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 C(q, r)
−BT (q, r) −CT (q, r) 0





� �� �
D(q,r)




eS
fC
fI



 (15)

where the skew-symmetric matrixD(q, r) represents the Dirac
structure D. Note that the Dirac structure may depend on the
configuration variables q and r, but this is not necessary.
The sub-matrix A(q, r) defines the relation between the

rate of change of the configuration of the internal degrees of
freedom q and the rate of change of the state s of the elastic
elements. Similarly, the sub-matrix B(q, r) defines the relation
between the rate of change of the output position r and the rate
of change of the state s of the elastic elements. In particular, if
the state s is determined by the configuration q of the internal
degrees of freedom and the actuator output position r via the
kinematic relation

λ : (q, r) �→ s (16)

then, by using (10), it follows that

A(q, r) :=
∂λ

∂q
(q, r), B(q, r) :=

∂λ

∂r
(q, r) (17)

The sub-matrix C(q, r) defines a gyration effect between
forces and velocities. However, such a gyration effect does
not exist in the mechanical domain and, without loss of
generality, it is assumed C(q, r) = 0. This implies that the
Dirac structure (15) becomes




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (18)

Observe that the skew-symmetry of the matrix D(q, r) is a
necessary condition for power continuity, as stated in (2)

�
eS fC fI

�



fS
eC
eI



 = 0 ⇔ D(q, r) = −DT (q, r)

As a result, via the matrices A(q, r) and B(q, r) the dual
relations between the forces exerted by the internal elastic
elements and the forces acting on the internal degrees of
freedom and the output are defined.
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Fig. 6. Generalized model of a variable stiffness actuator with a load - The
internal elastic elements are represented by the multidimensional C-element,
described by the energy function He(s). The internal degrees of freedom are
actuated via the control port (fC , eC), while the interconnection with the
load is via the output port (fI , eI). The I-element represents the load with
kinetic energy function Hp(p), i.e., it models the inertial properties.

From (18), the rate of change of the energy is

dHe

dt
(s) = �∂He

∂s
|ṡ�

= �eS |fS�
= eTS

�
A(q, r)fC +B(q, r)fI

�

= −eTCfC − eTI fI

Indeed, the rate of change of energy is determined by the
power supplied via the control port and the output port, as
stated in (6).

C. Variable Stiffness Actuator and a Load

To investigate the behavior of a variable stiffness actuator
connected to a load, we use the port-based model shown in
Figure 6. The C-element, together with its power conjugate
variables, and the control port are defined as in Section IV-B.
The I-element models the inertial properties of the load. In
particular, it represents a storage of kinetic energy, given by
the energy functionHp(p) =

1
2mp2, where p is the momentum

of the load and m its mass. By the interconnection of this
element to the output port, the port behavior is now given by

fI =
∂Hp

∂p
(p) (= ṙ)

eI = ṗ (= F )
(19)

Note that, from (18),

ṗ = −BT (q, r)eS = −BT (q, r)
∂He

∂s
(s) (20)

In order to describe the Dirac structure of the variable stiff-
ness actuator and the load in an input/output port-Hamiltonian
system representation, as state of the system, we take

x = (s, p, q, r)

i.e., the state of the elastic elements, the momentum of the
mass, the configuration of the internal degrees of freedom, and
the actuator output position, respectively. If we consider the
control port (fC , eC) as the input/output port of the system,
i.e., (u,−y), we can model this system in a input/output port-

Figure 7.5: Generalized model of a variable stiffness actuator—The D is the Dirac structure,
the internal elastic elements are represented by the multidimensional C-element, described by the
energy function He(s). The internal degrees of freedom are actuated via the control port (fC , eC),
while the interconnection with the load is via the output port (fI , eI).

• internally, there are a number nq ≥ ns of actuated degrees of freedom, with
configuration variables q;

• the stiffness K, sensed at the actuator output port, is determined by the
intrinsic properties, the state of the elastic elements and by the configuration
of the internal degrees of freedom.

Moreover, in our model, internal friction and inertia are neglected, since the focus
of the analysis is on the working principles of variable stiffness actuators and not
on the optimization of the implementation.

In Figure 7.5, a bond graph representation of a generic model of a variable
stiffness actuator is shown. In comparison with the model shown in Figure 7.4,
some differences can be observed. The C-element is now multidimensional and its
port behavior is characterized by power conjugate variables

fS = ṡ, eS =
∂He

∂s
(s) (7.14)

where He(s) is the storage of the elastic energy due to the internal elastic elements.
The MTF-element and 1-junction have been replaced by a generic Dirac structure,
which determines how the power is distributed between the C-element, the inter-
action or output port (fI , eI), and the control port (fC , eC). In particular, the
output port is characterized by two power conjugate variables, which correspond
to (ṙ, F ), i.e., the rate of change of the actuator output position r and the force
F that the actuator exerts on the load. The control port is characterized by two
power conjugate variables, which correspond to (q̇, τ), i.e., the rate of change of
the configuration of the internal degrees of freedom q and the torque τ generated
by them.

Note that, via the control port, the configuration of the internal degrees of free-
dom q is controlled, which, together with the actuator output position r, determine
the behavior of the Dirac structure. Using the internal degrees of freedom, power
can be used to do work at the output port, while at the same time the apparent
output stiffness can be changed.
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Since the Dirac structure realizes a power continuous interconnection of the
ports, it defines a constrained relation between the power conjugate variables. This
constrained relation can be represented in a matrix expression as




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 C(q, r)
−BT (q, r) −CT (q, r) 0





� �� �
D(q,r)




eS
fC
fI



 (7.15)

where the skew-symmetric matrix D(q, r) represents the Dirac structure D. Note
that the Dirac structure may depend on the configuration variables q and r, but
this is not necessary.

The sub-matrix A(q, r) defines the relation between the rate of change of the
configuration of the internal degrees of freedom q and the rate of change of the
state s of the elastic elements. Similarly, the sub-matrix B(q, r) defines the relation
between the rate of change of the output position r and the rate of change of the
state s of the elastic elements. In particular, if the state s is determined by the
configuration q of the internal degrees of freedom and the actuator output position
r via the kinematic relation

λ : (q, r) �→ s (7.16)

then, by using (7.10), it follows that

A(q, r) :=
∂λ

∂q
(q, r), B(q, r) :=

∂λ

∂r
(q, r) (7.17)

The sub-matrix C(q, r) defines a gyration effect between forces and velocities.
However, such a gyration effect does not exist in the mechanical domain and,
without loss of generality, it is assumed C(q, r) = 0. This implies that the Dirac
structure (7.15) becomes




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (7.18)

Observe that the skew-symmetry of the matrix D(q, r) is a necessary condition for
power continuity, as stated in (7.2)

�
eS fC fI

�



fS
eC
eI



 = 0 ⇔ D(q, r) = −DT (q, r)

As a result, via the matrices A(q, r) and B(q, r) the dual relations between the
forces exerted by the internal elastic elements and the forces acting on the internal
degrees of freedom and the output are defined.
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Fig. 5. Generalized model of a variable stiffness actuator - The D is the Dirac
structure, the internal elastic elements are represented by the multidimensional
C-element, described by the energy function He(s). The internal degrees of
freedom are actuated via the control port (fC , eC), while the interconnection
with the load is via the output port (fI , eI).

can be represented in a matrix expression as



fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 C(q, r)
−BT (q, r) −CT (q, r) 0





� �� �
D(q,r)




eS
fC
fI



 (15)

where the skew-symmetric matrixD(q, r) represents the Dirac
structure D. Note that the Dirac structure may depend on the
configuration variables q and r, but this is not necessary.
The sub-matrix A(q, r) defines the relation between the

rate of change of the configuration of the internal degrees of
freedom q and the rate of change of the state s of the elastic
elements. Similarly, the sub-matrix B(q, r) defines the relation
between the rate of change of the output position r and the rate
of change of the state s of the elastic elements. In particular, if
the state s is determined by the configuration q of the internal
degrees of freedom and the actuator output position r via the
kinematic relation

λ : (q, r) �→ s (16)

then, by using (10), it follows that

A(q, r) :=
∂λ

∂q
(q, r), B(q, r) :=

∂λ

∂r
(q, r) (17)

The sub-matrix C(q, r) defines a gyration effect between
forces and velocities. However, such a gyration effect does
not exist in the mechanical domain and, without loss of
generality, it is assumed C(q, r) = 0. This implies that the
Dirac structure (15) becomes




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (18)

Observe that the skew-symmetry of the matrix D(q, r) is a
necessary condition for power continuity, as stated in (2)

�
eS fC fI

�



fS
eC
eI



 = 0 ⇔ D(q, r) = −DT (q, r)

As a result, via the matrices A(q, r) and B(q, r) the dual
relations between the forces exerted by the internal elastic
elements and the forces acting on the internal degrees of
freedom and the output are defined.

C
..

He(s)
D I

..

Hp(p)

eS

fS

eC fC

eI

fI

Fig. 6. Generalized model of a variable stiffness actuator with a load - The
internal elastic elements are represented by the multidimensional C-element,
described by the energy function He(s). The internal degrees of freedom are
actuated via the control port (fC , eC), while the interconnection with the
load is via the output port (fI , eI). The I-element represents the load with
kinetic energy function Hp(p), i.e., it models the inertial properties.

From (18), the rate of change of the energy is

dHe

dt
(s) = �∂He

∂s
|ṡ�

= �eS |fS�
= eTS

�
A(q, r)fC +B(q, r)fI

�

= −eTCfC − eTI fI

Indeed, the rate of change of energy is determined by the
power supplied via the control port and the output port, as
stated in (6).

C. Variable Stiffness Actuator and a Load

To investigate the behavior of a variable stiffness actuator
connected to a load, we use the port-based model shown in
Figure 6. The C-element, together with its power conjugate
variables, and the control port are defined as in Section IV-B.
The I-element models the inertial properties of the load. In
particular, it represents a storage of kinetic energy, given by
the energy functionHp(p) =

1
2mp2, where p is the momentum

of the load and m its mass. By the interconnection of this
element to the output port, the port behavior is now given by

fI =
∂Hp

∂p
(p) (= ṙ)

eI = ṗ (= F )
(19)

Note that, from (18),

ṗ = −BT (q, r)eS = −BT (q, r)
∂He

∂s
(s) (20)

In order to describe the Dirac structure of the variable stiff-
ness actuator and the load in an input/output port-Hamiltonian
system representation, as state of the system, we take

x = (s, p, q, r)

i.e., the state of the elastic elements, the momentum of the
mass, the configuration of the internal degrees of freedom, and
the actuator output position, respectively. If we consider the
control port (fC , eC) as the input/output port of the system,
i.e., (u,−y), we can model this system in a input/output port-

Figure 7.6: Generalized model of a variable stiffness actuator with a load—The internal elastic
elements are represented by the multidimensional C-element, described by the energy function
He(s). The internal degrees of freedom are actuated via the control port (fC , eC), while the
interconnection with the load is via the output port (fI , eI). The I-element represents the load
with kinetic energy function Hp(p), i.e., it models the inertial properties.

From (7.18), the rate of change of the energy is

dHe

dt
(s) = �∂He

∂s
|ṡ�

= �eS |fS�
= eTS

�
A(q, r)fC +B(q, r)fI

�

= −eTCfC − eTI fI

Indeed, the rate of change of energy is determined by the power supplied via the
control port and the output port, as stated in (7.6).

7.4.3 Variable Stiffness Actuator and a Load

To investigate the behavior of a variable stiffness actuator connected to a load, we
use the port-based model shown in Figure 7.6. The C-element, together with its
power conjugate variables, and the control port are defined as in Section 7.4.2. The
I-element models the inertial properties of the load. In particular, it represents a
storage of kinetic energy, given by the energy function Hp(p) =

1
2mp2, where p is

the momentum of the load and m its mass. By the interconnection of this element
to the output port, the port behavior is now given by

fI =
∂Hp

∂p
(p) (= ṙ)

eI = ṗ (= F )
(7.19)

Note that, from (7.18),

ṗ = −BT (q, r)eS = −BT (q, r)
∂He

∂s
(s) (7.20)

In order to describe the Dirac structure of the variable stiffness actuator and
the load in an input/output port-Hamiltonian system representation, as state of
the system, we take

x = (s, p, q, r)
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i.e., the state of the elastic elements, the momentum of the mass, the configuration
of the internal degrees of freedom, and the actuator output position, respectively.
If we consider the control port (fC , eC) as the input/output port of the system,
i.e., (u,−y), we can model this system in a input/output port-Hamiltonian form.
We then obtain





ṡ
ṗ
q̇
ṙ



=





0 B(q, r) 0 0
−BT (q, r) 0 0 −1

0 0 0 0
0 1 0 0





� �� �
J(x)





∂H
∂s
∂H
∂p
∂H
∂q
∂H
∂r




+





A(q, r)
0
1
0





� �� �
g(x)

u

y =
�
AT (q, r) 0 1 0

�
� �� �

gT (x)





∂H
∂s
∂H
∂p
∂H
∂q
∂H
∂r





(7.21)

where H(s, p) := He(s) + Hp(p), i.e., the sum of the energy stored in the elastic
elements and the kinetic energy stored in the mass.

The rate of change of the energy is given by

d

dt
H(x) =

∂TH

∂xT

dx

dt

=
∂TH

∂xT
J(x)

∂H

∂x
+

∂TH

∂xT
g(x)u

=
∂TH

∂sT
A(q, r)u

= yTu = −eTCfC

(7.22)

where we used the skew-symmetry of J(x) and that ∂H
∂q = 0. It is observed that

indeed energy can be added to the system only via the control port (fC , eC).

7.5 Kinematic Properties of Energy Efficient Vari-
able Stiffness Actuators

In this Section, we analyze the port-Hamiltonian model of a variable stiffness actu-
ator, as given in (7.21), with the aim of deriving the kinematic properties that the
actuator should have to be energy efficient. In particular, we derive the kinematic
properties that allow the apparent output stiffness to be changed without changing
the stored elastic energy.

Since the stored energy is a function of the state s of the elastic elements, we
investigate the properties of the kinematic map (7.16). In particular, from (7.17)
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we have:
ṡ = A(q, r)q̇ +B(q, r)ṙ

that shows how the inputs q̇ and the motion of the load ṙ affect the state s.
Therefore, in the next subsections, we investigate the influences of the matrices
A(q, r) and B(q, r) on the energy of the system and on the apparent output stiffness.

7.5.1 Properties and Requirements for A(q, r)

When the variable stiffness actuator is connected to a load, the total energy of the
system is determined by its initial energy and the energy supplied via the control
port, as described by (7.22). From (7.22), if dim (kerA(q, r)) �= 0, it follows that

Ḣ = 0 ⇐ q̇ ∈ kerA(q, r) (7.23)

This condition states that, if the actuator has a mechanical structure such that the
dimension of kerA(q, r) is not zero, some trajectories of the configuration variables
q do not change the total energy of the system. In particular, these trajectories
do not change the state s of the internal elastic elements. As shown in [66], if
these trajectories of q do change the apparent output stiffness, then the actuator
is energy efficient.

Mathematically, it is thus needed that the design of the actuator is such that
there exist trajectories of q in the kernel of A(q, r) that change the apparent out-
put stiffness as desired. This implies that the mechanical design should include a
redundancy in the kinematic structure that links the internal degrees of freedom
to the elastic elements.

Note that condition (7.23) does not mean that changing the configuration vari-
able q requires no energy at all. It is possible that in the actuation of the internal
degrees of freedom opposite work is done, e.g., a positive power flow for actuating
one degree of freedom is exactly balanced by a negative power flow for actuating a
second degree of freedom. Therefore, even if (7.23) is satisfied, the negative work
is lost due to dissipation, but the variable stiffness actuator is still energy efficient,
according to the definition given in Section 7.2.

7.5.2 Properties and Requirements for B(q, r)

By using the kinematic map (7.16), the elastic energy He(s) can be expressed in
terms of the variables q and r, i.e.,

H̄e(q, r) := (He ◦ λ)(q, r)
Using (7.20), the force F exerted on the load can therefore also be written in terms
of q and r as

F̄ (q, r) = −BT (q, r)
∂H̄e

∂λ

= −
�
∂λ

∂r

�T ∂H̄e

∂λ
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The apparent output stiffness (7.1) is a local property, i.e., it is defined only for a
fixed r = r̄ and, therefore, it is given by

K(q, r = r̄) =

�
∂F̄

∂λ

∂λ

∂r

� ���
r=r̄

= BT (q, r̄)
∂2H̄e

∂λ2
B(q, r̄)

(7.24)

where we used that B(q, r̄) is not a function of r, and the minus sign is omitted by
convention.

By inspecting (7.24), it can be seen that the apparent output stiffness can be

varied by changing the configuration variables q if either ∂2H̄e
∂λ2 depends on q, or if

B(q, r) depends on q. However, the former option implies that the stored elastic
energy changes to achieve a change of stiffness, which contradicts the requirements
of energy efficiency. Hence, the latter option should be achieved [66].

From a mathematical point of view, the requirement on B(q, r) implies that
it should strictly depend on q for all configurations (q, r), i.e., the actuator must
implement a variable transmission ratio. This means that the mechanical design
should be such that the internal degrees of freedom modulate the transmission
between the internal elastic elements and the output.

7.6 Design of an Energy Efficient Variable Stiff-
ness Actuator

In this Section, we present the design of an energy efficient variable stiffness ac-
tuator, which satisfies the properties given in the previous Section, and thus is
able to change the apparent output stiffness without changing the energy stored in
the internal elastic elements. First, the working concept is explained, and then a
prototype is presented.

7.6.1 Conceptual Design

The proposed design, depicted in Figure 7.7, realizes a variable stiffness actuator
with a translational output motion. The functional principle is based on a linear
spring, which is connected to the output via a lever arm of variable length. The
effective length of the lever arm is controlled by the linear degree of freedom q1,
and thus q1 determines how the spring is sensed at the output. The linear degree
of freedom q2 is used to control the actuator output position r. The design and
control of this concept has been extensively described in [68].

The working principle satisfies the kinematic properties presented in the pre-
vious Section. The design is such that it presents a redundancy in how the two
internal degrees of freedom are connected to the spring, i.e., rank (A(q, r)) < 2,
and the matrix B(q) strictly depends on q, since the internal degrees of freedom
modulate the transmission between the internal spring and the output.
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Fig. 7. Conceptual design - The functional principle of the concept is a lever
arm of variable length q1, which connects the zero free length linear spring,
with elastic constant k, to the output. The effective length of the lever arm,
determined by the linear degree of freedom q1, determines how the spring is
sensed at the output. The actuator output position r is controlled by the linear
degree of freedom q2.

VI. DESIGN OF AN ENERGY EFFICIENT VARIABLE
STIFFNESS ACTUATOR

In this Section, we present the design of an energy efficient
variable stiffness actuator, which satisfies the properties given
in the previous Section, and thus is able to change the
apparent output stiffness without changing the energy stored
in the internal elastic elements. First, the working concept is
explained, and then a prototype is presented.

A. Conceptual Design
The proposed design, depicted in Figure 7, realizes a

variable stiffness actuator with a translational output motion.
The functional principle is based on a linear spring, which
is connected to the output via a lever arm of variable length.
The effective length of the lever arm is controlled by the linear
degree of freedom q1, and thus q1 determines how the spring
is sensed at the output. The linear degree of freedom q2 is
used to control the actuator output position r. The design and
control of this concept has been extensively described in [12].
The working principle satisfies the kinematic properties

presented in the previous Section. The design is such that
it presents a redundancy in how the two internal degrees of
freedom are connected to the spring, i.e., rank (A(q, r)) < 2,
and the matrix B(q) strictly depends on q, since the internal
degrees of freedom modulate the transmission between the
internal spring and the output.
In order to build the port-based model of this actuator

design, we analyze the kinematics. Let s denote the state
of the linear zero free length spring, i.e., its compression or
elongation, and be given by

s = � sinφ = �
r − q2
q1

(25)

It is assumed that the design is such that it is allowed to take
α = 0, i.e., the length � is large compared to s. Because
the spring is linear, the energy function describing the energy

springs

Fig. 8. Prototype realization - The prototype is designed to closely resemble
the concept shown in Figure 7. The zero free length linear spring has been
replaced by an antagonistic spring setup acting directly on the rotation point
of the lever arm, yielding the same desired behavior.

stored in the spring is given by He(s) =
1
2ks

2, where k is the
elastic constant of the spring. Substituting (25) yields

H̄e(q, r) =
1

2
k

�
�
r − q2
q1

�2

The rate of change of the state s is given by

ṡ =
d
dt

�
�
r − q2
q1

�

= − �

q1

�
sinφ 1

� �q̇1
q̇2

�
+

�

q1
ṙ

= fS

As in (14), we define eS = ∂He
∂s , i.e., the force exerted by

the spring. Then, the Dirac structure can be expressed by the
skew-symmetric matrix D(q, r) as (18) with

A(q, r) = − �

q1

�
sinφ 1

�

B(q) =
�

q1

It can be seen immediately that the matrices A(q, r) and B(q)
satisfy the properties listed in Section V.
By using (20) and the kinematic map (16), the output force

F̄ (q, r) is given by

F̄ (q, r) = − �

q1
k �

r − q2
q1

Using the definition of the actuator output stiffness (1) and
(24), we find that, for this design, the output stiffness K is
given by

K =
∂F̄

∂r
= k

�
�

q1

�2

(26)

Equation (26) shows that the apparent output stiffness only
depends on the degree of freedom q1, i.e., the effective length
of the lever arm. Therefore, the stiffness can be varied without
changing the energy stored in the spring.

Figure 7.7: Conceptual design—The functional principle of the concept is a lever arm of variable
length q1, which connects the zero free length linear spring, with elastic constant k, to the output.
The effective length of the lever arm, determined by the linear degree of freedom q1, determines
how the spring is sensed at the output. The actuator output position r is controlled by the linear
degree of freedom q2.

In order to build the port-based model of this actuator design, we analyze the
kinematics. Let s denote the state of the linear zero free length spring, i.e., its
compression or elongation, and be given by

s = � sinφ = �
r − q2
q1

(7.25)

It is assumed that the design is such that it is allowed to take α = 0, i.e., the
length � is large compared to s. Because the spring is linear, the energy function
describing the energy stored in the spring is given by He(s) =

1
2ks

2, where k is the
elastic constant of the spring. Substituting (7.25) yields

H̄e(q, r) =
1

2
k

�
�
r − q2
q1

�2

The rate of change of the state s is given by

ṡ =
d

dt

�
�
r − q2
q1

�

= − �

q1

�
sinφ 1

� �q̇1
q̇2

�
+

�

q1
ṙ

= fS

As in (7.14), we define eS = ∂He
∂s , i.e., the force exerted by the spring. Then, the

Dirac structure can be expressed by the skew-symmetric matrix D(q, r) as (7.18)
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Fig. 7. Conceptual design - The functional principle of the concept is a lever
arm of variable length q1, which connects the zero free length linear spring,
with elastic constant k, to the output. The effective length of the lever arm,
determined by the linear degree of freedom q1, determines how the spring is
sensed at the output. The actuator output position r is controlled by the linear
degree of freedom q2.

VI. DESIGN OF AN ENERGY EFFICIENT VARIABLE
STIFFNESS ACTUATOR

In this Section, we present the design of an energy efficient
variable stiffness actuator, which satisfies the properties given
in the previous Section, and thus is able to change the
apparent output stiffness without changing the energy stored
in the internal elastic elements. First, the working concept is
explained, and then a prototype is presented.

A. Conceptual Design
The proposed design, depicted in Figure 7, realizes a

variable stiffness actuator with a translational output motion.
The functional principle is based on a linear spring, which
is connected to the output via a lever arm of variable length.
The effective length of the lever arm is controlled by the linear
degree of freedom q1, and thus q1 determines how the spring
is sensed at the output. The linear degree of freedom q2 is
used to control the actuator output position r. The design and
control of this concept has been extensively described in [12].
The working principle satisfies the kinematic properties

presented in the previous Section. The design is such that
it presents a redundancy in how the two internal degrees of
freedom are connected to the spring, i.e., rank (A(q, r)) < 2,
and the matrix B(q) strictly depends on q, since the internal
degrees of freedom modulate the transmission between the
internal spring and the output.
In order to build the port-based model of this actuator

design, we analyze the kinematics. Let s denote the state
of the linear zero free length spring, i.e., its compression or
elongation, and be given by

s = � sinφ = �
r − q2
q1

(25)

It is assumed that the design is such that it is allowed to take
α = 0, i.e., the length � is large compared to s. Because
the spring is linear, the energy function describing the energy

springs

Fig. 8. Prototype realization - The prototype is designed to closely resemble
the concept shown in Figure 7. The zero free length linear spring has been
replaced by an antagonistic spring setup acting directly on the rotation point
of the lever arm, yielding the same desired behavior.

stored in the spring is given by He(s) =
1
2ks

2, where k is the
elastic constant of the spring. Substituting (25) yields

H̄e(q, r) =
1

2
k

�
�
r − q2
q1

�2

The rate of change of the state s is given by

ṡ =
d
dt

�
�
r − q2
q1

�

= − �

q1

�
sinφ 1

� �q̇1
q̇2

�
+

�

q1
ṙ

= fS

As in (14), we define eS = ∂He
∂s , i.e., the force exerted by

the spring. Then, the Dirac structure can be expressed by the
skew-symmetric matrix D(q, r) as (18) with

A(q, r) = − �

q1

�
sinφ 1

�

B(q) =
�

q1

It can be seen immediately that the matrices A(q, r) and B(q)
satisfy the properties listed in Section V.
By using (20) and the kinematic map (16), the output force

F̄ (q, r) is given by

F̄ (q, r) = − �

q1
k �

r − q2
q1

Using the definition of the actuator output stiffness (1) and
(24), we find that, for this design, the output stiffness K is
given by

K =
∂F̄

∂r
= k

�
�

q1

�2

(26)

Equation (26) shows that the apparent output stiffness only
depends on the degree of freedom q1, i.e., the effective length
of the lever arm. Therefore, the stiffness can be varied without
changing the energy stored in the spring.

Figure 7.8: Prototype realization—The prototype is designed to closely resemble the concept
shown in Figure 7.7. The zero free length linear spring has been replaced by an antagonistic
spring setup acting directly on the rotation point of the lever arm, yielding the same desired
behavior.

with

A(q, r) = − �

q1

�
sinφ 1

�

B(q) =
�

q1

It can be seen immediately that the matrices A(q, r) and B(q) satisfy the properties
listed in Section 7.5.

By using (7.20) and the kinematic map (7.16), the output force F̄ (q, r) is given
by

F̄ (q, r) = − �

q1
k �

r − q2
q1

Using the definition of the actuator output stiffness (7.1) and (7.24), we find that,
for this design, the output stiffness K is given by

K =
∂F̄

∂r
= k

�
�

q1

�2

(7.26)

Equation (7.26) shows that the apparent output stiffness only depends on the degree
of freedom q1, i.e., the effective length of the lever arm. Therefore, the stiffness can
be varied without changing the energy stored in the spring.

7.6.2 Prototype Realization

The conceptual design has been realized into a prototype, with the only aim of
validating the functional principle, and therefore it is not optimized for perfor-
mance [64].
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The realization of the prototype, as depicted in Figure 7.8, closely corresponds
to the concept depicted in Figure 7.7. The zero free length linear spring has been
replaced by two extension springs, connected in an antagonistic setup to the rota-
tion axis of the lever arm. The springs appear as a rotational spring at the rotation
point, with an elastic constant k = 0.68 Nm/rad. Even if the behavior is the same
as the zero free length spring, the added advantage is that the assumption α ≈ 0
is no longer necessary. Moreover, since the force exerted by the springs is applied
to the rotation point, the actual length � of the lever arm no longer appears in the
kinematic equations.

The two linear internal degrees of freedom q1 and q2 are actuated by spin-
dle drives with Maxon A-max brushed DC motors (Maxon Motor AG, Sachseln,
Switzerland), so not to have motors exerting static torques. The kinematically
constrained motions, as indicated in the conceptual design in Figure 7.7, are im-
plemented using sliders. In particular, aluminum bars with teflon based sliding
bearings are used.

7.6.3 Dynamic Model

For the prototype, a dynamic model is derived. Using this model, simulations can
be performed to validate the concept, and can be compared with the experimental
results. The dynamic model is derived using bond graphs and is shown in Fig-
ure 7.9, in which the generic Dirac structure of Figure 7.6 has been detailed. The
multidimensional control port has been split into two separate control ports, each
controlling one of the degrees of freedom q1 and q2. The lower two MTF-elements
implement the matrix A(q, r) as

A(q, r) :=
�
A1(q, r) A2(q, r)

�
=

�

q1

�
sinφ 1

�

The subsystems labeled M1 and M2 model the relevant dynamics of the spindle
drives, including the dynamic properties of the Maxon motors powering them,
as specified by the data sheets. The third MTF-element implements the matrix
B(q) = − �

q1
.

The 0-junction represents a power continuous common effort connection and,
for N connected bonds, is described by

e1 = · · · = eN ,
N�

i=1

fi = 0,

Together with the three MTF-elements, the 0-junction implements the Dirac struc-
ture as it is given in (7.18). We note that, in Figure 7.9, the minus signs are intro-
duced to comply with (7.18) and the causality of the 0-junction, but this does not
affect the behavior described by the bond graph.

As was done in Section 7.4, the load is modeled as a mass, rigidly connected to
the actuator output. The 1-junction represents a power continuous common flow
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B. Prototype Realization

The conceptual design has been realized into a prototype,
with the only aim of validating the functional principle, and
therefore it is not optimized for performance [13].
The realization of the prototype, as depicted in Figure 8,

closely corresponds to the concept depicted in Figure 7. The
zero free length linear spring has been replaced by two exten-
sion springs, connected in an antagonistic setup to the rotation
axis of the lever arm. The springs appear as a rotational spring
at the rotation point, with an elastic constant k = 0.68 Nm/rad.
Even if the behavior is the same as the zero free length spring,
the added advantage is that the assumption α ≈ 0 is no longer
necessary. Moreover, since the force exerted by the springs is
applied to the rotation point, the actual length � of the lever
arm no longer appears in the kinematic equations.
The two linear internal degrees of freedom q1 and q2 are

actuated by spindle drives with Maxon A-max brushed DC
motors [22], so not to have motors exerting static torques.
The kinematically constrained motions, as indicated in the
conceptual design in Figure 7, are implemented using sliders.
In particular, aluminum bars with teflon based sliding bearings
are used.

C. Dynamic Model

For the prototype, a dynamic model is derived. Using this
model, simulations can be performed to validate the concept,
and can be compared with the experimental results. The
dynamic model is derived using bond graphs and is shown
in Figure 9, in which the generic Dirac structure of Figure 6
has been detailed. The multidimensional control port has been
split into two separate control ports, each controlling one of the
degrees of freedom q1 and q2. The lower two MTF-elements
implement the matrix A(q, r) as

A(q, r) :=
�
A1(q, r) A2(q, r)

�
=

�

q1

�
sinφ 1

�

The subsystems labeled M1 and M2 model the relevant dy-
namics of the spindle drives, including the dynamic properties
of the Maxon motors powering them, as specified by the
data sheets. The third MTF-element implements the matrix
B(q) = − �

q1
.

The 0-junction represents a power continuous common
effort connection and, for N connected bonds, is described
by

e1 = · · · = eN ,
N�

i=1

fi = 0,

Together with the three MTF-elements, the 0-junction imple-
ments the Dirac structure as it is given in (18). We note that, in
Figure 9, the minus signs are introduced to comply with (18)
and the causality of the 0-junction, but this does not affect the
behavior described by the bond graph.
As was done in Section IV, the load is modeled as a

mass, rigidly connected to the actuator output. The 1-junction
represents a power continuous common flow connection and,
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Fig. 9. Bond graph based model of the prototype design - The various
MTF-elements and the 0-junction implement the Dirac structure, as given in
(18). The I-element and R-element model the inertial and frictional properties,
respectively. The subsystems M1 and M2 model the dynamic properties of
the spindles drives that actuate the degrees of freedom q1, q2.

for N connected bonds, is described by

f1 = · · · = fN ,
N�

i=1

ei = 0

The inertial properties of the load are modeled with the I-
element, defined in (19), with m = 0.06 kg. In addition,
the frictional properties are modeled by a linear R-element,
as defined in (5). The friction coefficient is experimentally
estimated to be R = 20 Ns/m. The value of the friction
coefficient is high due to friction of the sliders that constrain
the output motion.

VII. SIMULATION AND EXPERIMENTS
In this Section, we validate the working principle of the

prototype design, both in simulations and in experiments.
In order to have commensurable data, the same controllers

for the degrees of freedom q1 and q2 are used both in
simulation and in the experiments. In particular, the dynamic
model presented in Figure 9 has been implemented in the
20-sim simulation software [23], and using this model, PID
controllers are designed to control the velocities q̇1 and q̇2.
Using the 20-sim 4C tool-chain, these controllers can be
directly exported to C code, which can run on an external
controller board to actuate the experimental setup.
Two experiments are performed. The first one aims at

showing that the kinematic structure of the actuator is energy
efficient, and therefore that the apparent output stiffness of
the actuator can be varied without changing the energy in the
internal springs. In the second experiment, the aim is to show
that the mechanical design of the actuator is such that the
control energy, corresponding to the power flow in the control
port, is used only to realize the motion of the output, without
storing any energy in the internal springs.

A. Static Output Stiffness
In order to show the efficiency of the kinematic structure,

the actuator is required to vary the apparent output stiffness,
while the energy in the springs remains constant. This can be

Figure 7.9: Bond graph based model of the prototype design—The various MTF-elements and
the 0-junction implement the Dirac structure, as given in (7.18). The I-element and R-element
model the inertial and frictional properties, respectively. The subsystems M1 and M2 model the
dynamic properties of the spindles drives that actuate the degrees of freedom q1, q2.

connection and, for N connected bonds, is described by

f1 = · · · = fN ,
N�

i=1

ei = 0

The inertial properties of the load are modeled with the I-element, defined in (7.19),
with m = 0.06 kg. In addition, the frictional properties are modeled by a linear
R-element, as defined in (7.5). The friction coefficient is experimentally estimated
to be R = 20 Ns/m. The value of the friction coefficient is high due to friction of
the sliders that constrain the output motion.

7.7 Simulation and Experiments

In this Section, we validate the working principle of the prototype design, both in
simulations and in experiments.

In order to have commensurable data, the same controllers for the degrees of
freedom q1 and q2 are used both in simulation and in the experiments. In particular,
the dynamic model presented in Figure 7.9 has been implemented in the 20-sim
simulation software (Controllab Products, Enschede, The Netherlands), and using
this model, PID controllers are designed to control the velocities q̇1 and q̇2. Using
the 20-sim 4C tool-chain, these controllers can be directly exported to C code,
which can run on an external controller board to actuate the experimental setup.

Two experiments are performed. The first one aims at showing that the kine-
matic structure of the actuator is energy efficient, and therefore that the apparent
output stiffness of the actuator can be varied without changing the energy in the
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internal springs. In the second experiment, the aim is to show that the mechanical
design of the actuator is such that the control energy, corresponding to the power
flow in the control port, is used only to realize the motion of the output, without
storing any energy in the internal springs.

7.7.1 Static Output Stiffness

In order to show the efficiency of the kinematic structure, the actuator is required to
vary the apparent output stiffness, while the energy in the springs remains constant.
This can be achieved by loading the springs and then varying the internal degrees
of freedom while satisfying (7.23).

Due to its definition (7.1), the stiffness cannot be measured directly. However,
as the stiffness is defined as a small variation of the output force due to a small
variation of the output position, stiffness can be experienced by measuring the
output force F̄ for various settings of q1 at fixed output positions. Indeed, for
the specific design, due to (7.26), a change in q1 corresponds in a change in the
apparent output stiffness.

The experiment is as follows. The actuator output r is fixed and the degree
of freedom q1 is set to a distance of 0.076 m from the rotation point of the lever
arm. Then, the degree of freedom q2 is set such that the springs are loaded and
φ = 0.15 rad. Then, q1 is moved towards the rotation point in 5 mm increments,
until the final position of q1 = 0.026 m is reached. Simultaneously, q2 is actuated
satisfying (7.23), so that φ and thus sinφ are constant. After each increment of
q1, the output force is measured. From (7.18), and the actual dimensions of the
prototype, the output force is given by

F̄ (q1, r = r̄) = γ · q−1
1 (7.27)

with γ = k sinφ = 0.101 obtained from analyzing the kinematics of the design. A
typical experiment is shown in Figure 7.10, where we plot the measured values of
φ and q in solid lines and the set-points for φ and q1 in thick grey lines.

Figure 7.11 presents the results. The solid line represents the theoretic output
force curve, given by (7.27). The open square markers represent the simulation
results. Since the output force is measured in steady state conditions, only the
kinematic parameters of the mechanism are relevant, and thus it is expected that
simulation and theory give the same results.

The solid markers represent the experimental results. At each of the eleven set-
point positions q1, fifteen independent force measurements have been performed in
steady state conditions. The markers represent the average of the measurements at
a particular position q1, and the vertical bars indicate the 1σ standard deviation
of the measurements. It can be seen that, except for the measurements for q1 =
0.076 m, the measurements are within 1σ of the theoretic curve. The deviation for
q1 = 0.076 m can be explained by the stiction present in the system, which causes
the output slider to remain in a certain position for small output forces F̄ . By
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Fig. 10. Output force measurement experiment - The internal springs of the
actuator are loaded, such that φ = 0.15 rad. The degree of freedom q1 is
varied along its configuration range, while q2 is varied while satisfying (23).
The result is that φ is kept constant and thus that the energy stored in the
springs does not change during the experiment. The thick grey lines indicate
the set-point values for φ and q1, while the solid black lines represent the
measured values.

achieved by loading the springs and then varying the internal
degrees of freedom while satisfying (23).
Due to its definition (1), the stiffness cannot be measured

directly. However, as the stiffness is defined as a small
variation of the output force due to a small variation of the
output position, stiffness can be experienced by measuring
the output force F̄ for various settings of q1 at fixed output
positions. Indeed, for the specific design, due to (26), a change
in q1 corresponds in a change in the apparent output stiffness.
The experiment is as follows. The actuator output r is fixed

and the degree of freedom q1 is set to a distance of 0.076 m
from the rotation point of the lever arm. Then, the degree of
freedom q2 is set such that the springs are loaded and φ =
0.15 rad. Then, q1 is moved towards the rotation point in 5 mm
increments, until the final position of q1 = 0.026 m is reached.
Simultaneously, q2 is actuated satisfying (23), so that φ and
thus sinφ are constant. After each increment of q1, the output
force is measured. From (18), and the actual dimensions of
the prototype, the output force is given by

F̄ (q1, r = r̄) = γ · q−1
1 (27)

with γ = k sinφ = 0.101 obtained from analyzing the
kinematics of the design. A typical experiment is shown in
Figure 10, where we plot the measured values of φ and q in
solid lines and the set-points for φ and q1 in thick grey lines.
Figure 11 presents the results. The solid line represents

the theoretic output force curve, given by (27). The open
square markers represent the simulation results. Since the
output force is measured in steady state conditions, only the
kinematic parameters of the mechanism are relevant, and thus
it is expected that simulation and theory give the same results.
The solid markers represent the experimental results. At

each of the eleven set-point positions q1, fifteen independent
force measurements have been performed in steady state
conditions. The markers represent the average of the mea-
surements at a particular position q1, and the vertical bars
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Fig. 11. Measured output force - The solid curve is the theoretic curve
(27). The open squares represent the measurements performed in simulation,
using the dynamic model derived in Section VI. The solid dots indicate the
average of experimentally measured values, and the vertical bars indicate the
measurement standard deviation.

indicate the 1 σ standard deviation of the measurements. It can
be seen that, except for the measurements for q1 = 0.076 m,
the measurements are within 1 σ of the theoretic curve. The
deviation for q1 = 0.076 m can be explained by the stiction
present in the system, which causes the output slider to
remain in a certain position for small output forces F̄ . By this
observation, the measurements for q1 = 0.076m are discarded.
Then, for the remaining measurements, a least square curve
fit to the averaged values results in

F̄ (q1, r = r̄) = 0.107 · q−0.99
1 (28)

with a residual of ρ2 = 0.97. The experimental curve closely
matches the theoretic curve (27). These results show that the
prototype works in an energy efficient way as was derived
from theory, and that indeed the apparent output stiffness can
be changed without changing the energy stored in the internal
springs.

B. Dynamic Actuation
In the second experiment, a load is connected to the actuator.

The aim is to show that, when the apparent output stiffness
is kept constant, work can be done on the load while no
energy is stored or extracted from the springs. This implies
that, when the load is not accelerated, there is no power flow
to the springs.
The experiment is as follows. A mass of m = 0.06 kg is

rigidly attached to the actuator output. Then, starting from the
initial output position r = 0 m, a desired set-point value of
r = 0.03 m is provided. The degree of freedom q2 is used
to achieve this displacement, while q1 is kept constant so the
apparent output stiffness is constant.
The results of both simulation and experiment are presented

in Figure 12. The dashed lines represent simulation data,
obtained using the dynamic model presented in Section VI,
while the solid lines indicate data obtained from experiments
with the prototype setup. When the mass is accelerated, the
springs are compressed due to the inertial properties of the
load. However, when the mass reaches the desired position,

Figure 7.10: Output force measurement experiment—The internal springs of the actuator are
loaded, such that φ = 0.15 rad. The degree of freedom q1 is varied along its configuration range,
while q2 is varied while satisfying (7.23). The result is that φ is kept constant and thus that the
energy stored in the springs does not change during the experiment. The thick grey lines indicate
the set-point values for φ and q1, while the solid black lines represent the measured values.

this observation, the measurements for q1 = 0.076 m are discarded. Then, for the
remaining measurements, a least square curve fit to the averaged values results in

F̄ (q1, r = r̄) = 0.107 · q−0.99
1 (7.28)

with a residual of ρ2 = 0.97. The experimental curve closely matches the theoretic
curve (7.27). These results show that the prototype works in an energy efficient
way as was derived from theory, and that indeed the apparent output stiffness can
be changed without changing the energy stored in the internal springs.

7.7.2 Dynamic Actuation

In the second experiment, a load is connected to the actuator. The aim is to show
that, when the apparent output stiffness is kept constant, work can be done on the
load while no energy is stored or extracted from the springs. This implies that,
when the load is not accelerated, there is no power flow to the springs.

The experiment is as follows. A mass of m = 0.06 kg is rigidly attached to
the actuator output. Then, starting from the initial output position r = 0 m, a
desired set-point value of r = 0.03 m is provided. The degree of freedom q2 is
used to achieve this displacement, while q1 is kept constant so the apparent output
stiffness is constant.

The results of both simulation and experiment are presented in Figure 7.12.
The dashed lines represent simulation data, obtained using the dynamic model
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Fig. 10. Output force measurement experiment - The internal springs of the
actuator are loaded, such that φ = 0.15 rad. The degree of freedom q1 is
varied along its configuration range, while q2 is varied while satisfying (23).
The result is that φ is kept constant and thus that the energy stored in the
springs does not change during the experiment. The thick grey lines indicate
the set-point values for φ and q1, while the solid black lines represent the
measured values.

achieved by loading the springs and then varying the internal
degrees of freedom while satisfying (23).
Due to its definition (1), the stiffness cannot be measured

directly. However, as the stiffness is defined as a small
variation of the output force due to a small variation of the
output position, stiffness can be experienced by measuring
the output force F̄ for various settings of q1 at fixed output
positions. Indeed, for the specific design, due to (26), a change
in q1 corresponds in a change in the apparent output stiffness.
The experiment is as follows. The actuator output r is fixed

and the degree of freedom q1 is set to a distance of 0.076 m
from the rotation point of the lever arm. Then, the degree of
freedom q2 is set such that the springs are loaded and φ =
0.15 rad. Then, q1 is moved towards the rotation point in 5 mm
increments, until the final position of q1 = 0.026 m is reached.
Simultaneously, q2 is actuated satisfying (23), so that φ and
thus sinφ are constant. After each increment of q1, the output
force is measured. From (18), and the actual dimensions of
the prototype, the output force is given by

F̄ (q1, r = r̄) = γ · q−1
1 (27)

with γ = k sinφ = 0.101 obtained from analyzing the
kinematics of the design. A typical experiment is shown in
Figure 10, where we plot the measured values of φ and q in
solid lines and the set-points for φ and q1 in thick grey lines.
Figure 11 presents the results. The solid line represents

the theoretic output force curve, given by (27). The open
square markers represent the simulation results. Since the
output force is measured in steady state conditions, only the
kinematic parameters of the mechanism are relevant, and thus
it is expected that simulation and theory give the same results.
The solid markers represent the experimental results. At

each of the eleven set-point positions q1, fifteen independent
force measurements have been performed in steady state
conditions. The markers represent the average of the mea-
surements at a particular position q1, and the vertical bars
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Fig. 11. Measured output force - The solid curve is the theoretic curve
(27). The open squares represent the measurements performed in simulation,
using the dynamic model derived in Section VI. The solid dots indicate the
average of experimentally measured values, and the vertical bars indicate the
measurement standard deviation.

indicate the 1 σ standard deviation of the measurements. It can
be seen that, except for the measurements for q1 = 0.076 m,
the measurements are within 1 σ of the theoretic curve. The
deviation for q1 = 0.076 m can be explained by the stiction
present in the system, which causes the output slider to
remain in a certain position for small output forces F̄ . By this
observation, the measurements for q1 = 0.076m are discarded.
Then, for the remaining measurements, a least square curve
fit to the averaged values results in

F̄ (q1, r = r̄) = 0.107 · q−0.99
1 (28)

with a residual of ρ2 = 0.97. The experimental curve closely
matches the theoretic curve (27). These results show that the
prototype works in an energy efficient way as was derived
from theory, and that indeed the apparent output stiffness can
be changed without changing the energy stored in the internal
springs.

B. Dynamic Actuation
In the second experiment, a load is connected to the actuator.

The aim is to show that, when the apparent output stiffness
is kept constant, work can be done on the load while no
energy is stored or extracted from the springs. This implies
that, when the load is not accelerated, there is no power flow
to the springs.
The experiment is as follows. A mass of m = 0.06 kg is

rigidly attached to the actuator output. Then, starting from the
initial output position r = 0 m, a desired set-point value of
r = 0.03 m is provided. The degree of freedom q2 is used
to achieve this displacement, while q1 is kept constant so the
apparent output stiffness is constant.
The results of both simulation and experiment are presented

in Figure 12. The dashed lines represent simulation data,
obtained using the dynamic model presented in Section VI,
while the solid lines indicate data obtained from experiments
with the prototype setup. When the mass is accelerated, the
springs are compressed due to the inertial properties of the
load. However, when the mass reaches the desired position,

Figure 7.11: Measured output force—The solid curve is the theoretic curve (7.27). The open
squares represent the measurements performed in simulation, using the dynamic model derived
in Section 7.6. The solid dots indicate the average of experimentally measured values, and the
vertical bars indicate the measurement standard deviation.

presented in Section 7.6, while the solid lines indicate data obtained from exper-
iments with the prototype setup. When the mass is accelerated, the springs are
compressed due to the inertial properties of the load. However, when the mass
reaches the desired position, and is no longer accelerated, the springs have also
returned to their rest length and thus no energy is left in the springs. The oscilla-
tions in the experimental curve for φ are due to stiction in the sliders supporting
the output motion.

It can be observed that, although in simulation the device responds faster to
the set-point change, the response is similar and the settling time is of the same
order of magnitude for both the model and the prototype. Despite the differences
in performance, the results confirm the working principle of the concept design.

7.7.3 Results

The experimental results validate the working principle of the conceptual design
presented in Section 7.6. In particular, the first experiment has shown that indeed
the concept is able to change the apparent output stiffness while keeping the energy
stored in the springs constant. Even if this test was performed in static conditions,
the results clearly validate the concept, as is illustrated by the close match between
the theoretic curve (7.27) and the experimentally obtained curve (7.28). The high
stiction forces present in the current realization did not allow for dynamic stiffness
changes.

In the dynamic experiment, it was shown that when a load is actuated, all the
power supplied by the controllers of the internal degrees of freedom is used to do
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Fig. 12. Output displacement experiment - A load of m = 0.06 kg is
displaced from r = 0 m to r = 0.03 m, using the degree of freedom
q2. The grey thick line is the desired output position, while the simulation
and experimental results are shown using the dashed lines and continuous
lines, respectively. While the mass is accelerated, some energy is stored in
the springs, but this energy is completely released after acceleration.

and is no longer accelerated, the springs have also returned to
their rest length and thus no energy is left in the springs. The
oscillations in the experimental curve for φ are due to stiction
in the sliders supporting the output motion.
It can be observed that, although in simulation the device

responds faster to the set-point change, the response is similar
and the settling time is of the same order of magnitude for
both the model and the prototype. Despite the differences in
performance, the results confirm the working principle of the
concept design.

C. Results
The experimental results validate the working principle of

the conceptual design presented in Section VI. In particular,
the first experiment has shown that indeed the concept is
able to change the apparent output stiffness while keeping
the energy stored in the springs constant. Even if this test
was performed in static conditions, the results clearly validate
the concept, as is illustrated by the close match between the
theoretic curve (27) and the experimentally obtained curve
(28). The high stiction forces present in the current realization
did not allow for dynamic stiffness changes.
In the dynamic experiment, it was shown that when a load

is actuated, all the power supplied by the controllers of the
internal degrees of freedom is used to do work at the output.
The two experiments show that a proof of concept of an

energy efficient variable stiffness actuator design has been
realized.

VIII. DISCUSSION
In this work, we started from a formal mathematical model

of variable stiffness actuators. From there, we derived kine-
matic properties, which guarantee that the apparent output
stiffness can be changed without changing the energy stored
in the internal elastic elements. In particular, it was found
that there should be an internal redundancy and a modulated

transmission between the internal elastic elements and the
output. This was illustrated with a conceptual design, based on
a lever arm of variable length. The realized prototype validated
the working principle of the concept.
The analysis of Section V can also be applied to variable

stiffness actuator designs presented in literature. In a previous
work, we showed that, for actuator designs that use a preten-
sion mechanism, the change of the apparent output stiffness is
not energy efficient [21]. Any design based on the antagonistic
principle, e.g. the actuator presented in [10], does not satisfy
the requirements on the matrices A(q, r) and B(q, r), and is
thus not energy efficient. Also the design presented in [11],
which also uses pretension to change the apparent output
stiffness, does not achieve energy efficiency for the same
reasons. The designs presented in [14], [15] and [16] do satisfy
the conditions for both A(q, r) and B(q, r). In fact, these
designs present a variation of the lever arm concept presented
in Section VI.
An important observation we made regarding the prototype

concerns stiction. Even though performance was not a criterion
in designing the prototype, and hence it may be assumed that
friction and stiction may be reduced by an improved design,
the concept of the lever arm of variable length is inherently
hindered by stiction and friction forces, which are magnified
by the springs forces. Therefore, any design based on the lever
arm concept will suffer from stiction and friction, especially
in loaded conditions. This can be avoided by using a rota-
tional equivalent of the lever arm, i.e., a continuous variable
transmission. Using such a transmission in combination with a
rotational spring also avoids the transformation between linear
and rotational motion.

IX. CONCLUSIONS
In this work, we presented and validated a design concept

for an energy efficient variable stiffness actuator. Starting
from the port-Hamiltonian modeling paradigm, a generic port-
based model of variable stiffness actuators was derived, which
provides valuable insights in the power flows between the
controller, the actuator and the load. From an analysis of
this model, kinematic properties were derived that a variable
stiffness actuator design must satisfy to allow changes of the
apparent output stiffness without any variation of the energy
in the internal elastic elements. Based on these properties, a
concept design was presented. The working principle of the
concept was validated both in simulation and in experiments
with a prototype realization. Analysis of the prototype revealed
how improvements in performance can be made, and some
considerations for future designs were presented.
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Figure 7.12: Output displacement experiment—A load of m = 0.06 kg is displaced from r = 0 m
to r = 0.03 m, using the degree of freedom q2. The grey thick line is the desired output position,
while the simulation and experimental results are shown using the dashed lines and continuous
lines, respectively. While the mass is accelerated, some energy is stored in the springs, but this
energy is completely released after acceleration.

work at the output.
The two experiments show that a proof of concept of an energy efficient variable

stiffness actuator design has been realized.

7.8 Discussion

In this work, we started from a formal mathematical model of variable stiffness
actuators. From there, we derived kinematic properties, which guarantee that the
apparent output stiffness can be changed without changing the energy stored in
the internal elastic elements. In particular, it was found that there should be an
internal redundancy and a modulated transmission between the internal elastic
elements and the output. This was illustrated with a conceptual design, based
on a lever arm of variable length. The realized prototype validated the working
principle of the concept.

The analysis of Section 7.5 can also be applied to variable stiffness actuator
designs presented in literature. In a previous work, we showed that, for actuator
designs that use a pretension mechanism, the change of the apparent output stiff-
ness is not energy efficient [66]. Any design based on the antagonistic principle,
e.g. the actuator presented in [46], does not satisfy the requirements on the matri-
ces A(q, r) and B(q, r), and is thus not energy efficient. Also the design presented
in [75], which also uses pretension to change the apparent output stiffness, does not
achieve energy efficiency for the same reasons. The designs presented in [34, 35]
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and [39] do satisfy the conditions for both A(q, r) and B(q, r). In fact, these designs
present a variation of the lever arm concept presented in Section 7.6.

An important observation we made regarding the prototype concerns stiction.
Even though performance was not a criterion in designing the prototype, and hence
it may be assumed that friction and stiction may be reduced by an improved design,
the concept of the lever arm of variable length is inherently hindered by stiction
and friction forces, which are magnified by the springs forces. Therefore, any design
based on the lever arm concept will suffer from stiction and friction, especially in
loaded conditions. This can be avoided by using a rotational equivalent of the
lever arm, i.e., a continuous variable transmission. Using such a transmission in
combination with a rotational spring also avoids the transformation between linear
and rotational motion.

7.9 Conclusions

In this work, we presented and validated a design concept for an energy efficient
variable stiffness actuator. Starting from the port-Hamiltonian modeling paradigm,
a generic port-based model of variable stiffness actuators was derived, which pro-
vides valuable insights in the power flows between the controller, the actuator and
the load. From an analysis of this model, kinematic properties were derived that
a variable stiffness actuator design must satisfy to allow changes of the apparent
output stiffness without any variation of the energy in the internal elastic elements.
Based on these properties, a concept design was presented. The working principle of
the concept was validated both in simulation and in experiments with a prototype
realization. Analysis of the prototype revealed how improvements in performance
can be made, and some considerations for future designs were presented.
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8.1 Introduction

In applications, in which robots need to interact with the environment or with
humans, if the actuation is too stiff, instability can occur during the interaction,
leading to possible damage of the robot, or even to injuries to humans. The in-
stability can be effectively dealt with by using impedance control strategies [31].
However, since the reliability of this approach depends on software implementation,
a mechanical compliance can be added in the robot actuation to ensure intrinsic
safe interaction. By making this compliance variable, and thus realizing variable
stiffness actuators, the apparent stiffness of the robot can be tuned to a specific
task, and it is possible to achieve the trade-off between precision of motion and ro-
bustness [5, 1]. Given the broad range of possible applications of variable stiffness
actuators, the research efforts in designing such actuators is increasing.

Many different designs have been presented, based on different working prin-
ciples [59]. For example, ‘Jack Spring’TM varies the number of active coils of an
internal spring [32], and the actuator presented in [9] changes the configuration of
permanent magnets to achieve a variable stiffness. However, most variable stiffness
actuator designs internally present a set of elastic elements, usually springs, and a
set of actuated degrees of freedom. The mechanics is such that the apparent out-
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put stiffness is determined by the intrinsic properties of the elastic elements and
by the configuration of the internal degrees of freedom. For example, in VSA [54],
VSA-II [46] and VS-Joint [75], the change of the stiffness is realized by chang-
ing the pretension of the internal nonlinear springs. In other actuators, including
vsaUT [68, 67], AwAS [34], AwAS-II [35] and HDAU [39], the change of the ap-
parent output stiffness is obtained by changing the transmission ratio between the
internal linear springs and the actuator output by implementing a lever arm with
variable effective length.

By comparing different working principles and, therefore, different kinematic
structures, it can be observed that, during a dynamic behavior of the actuators,
part of the power flow from the internal degrees of freedom is directed to the
internal elastic elements, instead of to the load. This implies that potential energy
is undesirably stored in the elastic elements.

In this paper, we evaluate the power flow in variable stiffness actuators with
main focus on the amount of energy captured by the internal elastic elements
during a nominal functioning of the actuator. In particular, the aim of this work is
to analyze the influence of the actuator kinematics on the power flow in the system.
This allows an evaluation of the topology of the actuator without considering the
internal friction or dissipation due to specific realization choices. In an earlier
work, we already defined a measure of energy consumption during the change of
the apparent stiffness [66]. We showed that, in static conditions, the amount of
energy used by a variable stiffness actuator to change the apparent output stiffness
is strongly influenced by its kinematic properties.

We define a power flow ratio in dynamic conditions that measures how much
power can be transferred from the internal degrees of freedom to the output, due to
the actuator kinematic design, irrespective of the dynamic behavior of the load. We
show that, for different principle designs, this power flow ratio is strictly related to
the kinematic properties of the actuator and it is independent of the task realized
by the load. The power flow ratio is derived from the analysis of a port-based
model of variable stiffness actuators, introduced in [68, 67], which highlights the
power flows inside the actuator structure and of the actuator towards the external
environment.

The paper is organized as follows. In Section 8.2, we describe a port-based
framework of variable stiffness actuators, which provides the necessary background
for the power flow analysis and the derivation of the power flow ratio. In Section 8.3,
a port-based model of variable stiffness actuators is presented, with particular at-
tention to the analysis of the actuator kinematics. Section 8.4 presents a power
flow analysis, which highlights how the power from the control port is distributed
between the internal elastic elements and the output port, and we define the power
flow ratio, which is then computed for some variable stiffness actuator design prin-
ciples in Section 8.5. Concluding remarks are given in Section 8.6.
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8.2 Port-based Modeling Framework

In this Section, we briefly describe the port-based modeling framework and the
bond-graph representation. Further reading can be found in [14, 50].

8.2.1 Port-based Modeling

The fundamental concept behind the port-based modeling framework is that any
physical system can be seen as the interconnection of simple elements, which are
characterized by a specific energetic behavior. The interconnections are realized
by ports, which are defined by a pair of power conjugate variables, namely flows
and efforts. For example, in the mechanical domain, the flows are interpreted as
velocities and the efforts as forces.

Let f be an element of the linear space of flows F and e be an element of the
dual linear space of efforts1 E := F∗. The dual product �e|f� yields power and,
therefore, a pair of conjugate variables defines a power flow P on the total space
of port variables, i.e.,

P = �e|f�, (f, e) ∈ F × E
The distribution of power flow among the different ports of the physical system is
described by a power continuous network topology. A Dirac structure on F × E is
a subspace D ⊂ F × E , with dim D = dim F , such that

�e|f� = 0 ∀ (f, e) ∈ D (8.1)

This relation defines power-conservation and, therefore, it implies that the total
power entering, or leaving, a Dirac structure is zero. The behavior of any physical
system can be modeled by making explicit its network topology, i.e., its Dirac
structure.

The generic network topology is shown in Figure 8.1, where four separate power
ports can be distinguished:

• the storage port interconnects the internal energy storage elements C, which
represents storage of either generalized potential or generalized kinetic energy.
If H is the Hamiltonian energy function of the system, the power conjugate
variables (fS , eS) at this port satisfy the energy balance

dH

dt
= �eS |fS� (8.2)

• the dissipative port interconnects the energy dissipation element R and is
characterized by power conjugate variables (fR, eR);

• the control port, characterized by power conjugate variables (fC , eC), is used
for the control actions;

1Under coordinate transformations, efforts behave as co-vectors. However, for notational con-
venience, we write them as vectors in this work.
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actuator output position δr, i.e.,

K :=
δF

δr
(1)

If we consider a variable stiffness actuator as a collection
of elastic elements and ideal actuated degrees of freedom, i.e.,
the degrees of freedom are without mass and without friction,
then the electrical energy supplied to the internal actuators
can either be used to do work at the actuator output, or it
can be internally stored in the elastic elements. For example,
the energy is stored when the internal degrees of freedom are
used to change the pretension of internal springs to achieve a
different apparent output stiffness. However, in this case, the
energy is irreversibly stored, in the sense that it cannot be
used to do work at the output. This means that changing the
apparent output stiffness has a negative impact on the energy
efficiency of the actuator, as already observed in [18].
In robotic applications in which energy efficiency is of

particular concern, all power supplied to a variable stiffness
actuator should be used only to do work at the actuator output,
and not to change the apparent output stiffness. Following this
argument, by energy efficient variable stiffness actuators, we
mean actuators for which the apparent output stiffness can be
changed without injecting or extracting energy to and from
the internal elastic elements.
The aim of this work is to find which kinematic properties

variable stiffness actuators must satisfy to be energy efficient,
according to the definition above. We use the port-based
approach as a tool for this search, because it reveals how the
kinematics determine the power flows inside the actuator, i.e.,
the power flows between the internal degrees of freedom, the
internal elastic elements, and the actuator output. Moreover,
the state of the elastic elements, from which we derive the
definition of energy efficiency, is explicitly described in the
model and can be intuitively used to derive the requirements on
the kinematic structure. The analysis of the port-based model
allows for the introduction of a conceptual design based on
these requirements and for the realization of a prototype.

III. PORT-BASED MODELING FRAMEWORK

In this Section, we intend to briefly introduce the port-
based modeling framework, which we use with the aim
of providing more insights in the energy flows in variable
stiffness actuators. For a more comprehensive treatment of
port-based modeling and bond graphs, the reader is referred
to e.g. [19], [20].

A. Port-based Modeling

Any physical system can be modeled in a port-based
framework. A key element in this modeling framework is the
concept of power conjugate variables, called efforts and flows.
In the mechanical domain, flows are physically interpreted as
velocities and efforts as forces. The dual product �e|f� of an
effort e and a flow f yields power. A pair of effort and flow
variables thus defines a power flow.

D

R: dissipation

interaction

control

C: storage

Fig. 1. Network structure of a generic physical system - The Dirac structure
D defines a power continuous connection between the ports. Internal energy
storage is represented by the C-element, and energy dissipation by the R-
element. The system interacts with the environment via the control port and
the interaction port.

If f is an element of a real vector space V , and e is an
element of the dual vector space1 V∗, then we can define a
subspace D ⊂ V × V∗, called Dirac structure, such that

�e|f� = 0, ∀ (f, e) ∈ D (2)

A Dirac structure defines a network topology, i.e., a distribu-
tion of power flows among the ports of the structure, and from
(2) it follows that a Dirac structure is power continuous. Note
that a Dirac structure is allowed to vary in time, as long as
the power continuity is preserved.
Using a Dirac structure, we can model the behavior of

the system by making explicit its network topology. The
generic network topology is shown in Figure 1, where four
separate power ports can be distinguished. The interaction
port is available for interaction with the environment, i.e., (a
composition of) other systems. The associated port variables
are denoted by the pair (fI , eI). The control port is used for
control action, with associated port variables (fC , eC). The
port variables of the storage port are denoted by the pair
(fS , eS) and are associated with the internal energy storage of
the system, represented by a Hamiltonian energy function H .
At this port, the power conjugate variables satisfy the energy
balance

dH
dt

= �eS |fS� (3)

Energy is dissipated via the dissipation port, with associated
port variables (fR, eR) satisfying

�eR|fR� ≤ 0 (4)

Often, a linear model of the dissipative element is used, and
then the port variables are related as

fR = −ReR (5)

with a positive semi-definite matrix R = RT ≥ 0.
The Dirac structure D defines the power continuous port

interconnection. From the definition of a Dirac structure (2),
it follows that

�eS |fS�+ �eR|fR�+ �eI |fI�+ �eC |fC� = 0

1Under coordinate transformations, efforts behave as co-vectors. However,
for notational convenience, we write them as vectors in this work.

Figure 8.1: Generic network structure of a physical system—The Dirac structure D defines a
power continuous interconnection between the ports. Internal energy storage is represented by a
C-element, and energy dissipation by the R-element. The system interacts with the environment
via the control port and the interaction port.

• the interaction port, characterized by power conjugate variables (fI , eI), rep-
resents the interactions with the environment, i.e. (a composition of) other
physical systems.

Since from the definition in (8.1) the Dirac structure D is a power continuous
network topology, it follows that

�eS |fS�+ �eR|fR�+ �eI |fI�+ �eC |fC� = 0 (8.3)

and, by substituting (8.2),

dH

dt
= −�eR|fR� − �eI |fI� − �eC |fC�

i.e., the rate of change of the internal energy is determined by the amount of
dissipated energy, and the power flow through the interaction and the control ports.
This means that the system is passive with respect to these input ports.

A Dirac structure can describe any power continuous network topology, which
can be either constant or configuration dependent. Therefore, it provides a com-
plete way to describe any physical system dynamics. In particular, it highlights the
power flows inside the system itself and of the system towards the external environ-
ment. With respect to variable stiffness actuators, by describing each actuator in
terms of its Dirac structure, it is possible to identify both common components and
different dynamic behaviors among the various designs. This means that, by de-
riving for each actuator the corresponding Dirac structure, the different actuators
kinematics can be thoroughly analyzed and compared.

8.2.2 Bond Graph Representation

The concept of network topologies, and thus of Dirac structures, allows a compact
graphical representation. Using bond graphs, we can represent the generic physical
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3

Substituting (3), we have
dH
dt

= −�eR|fR� − �eI |fI� − �eC |fC� (6)

i.e., the rate of change of the internal energy is determined by
the amount of energy dissipated, and the power flow through
the control and the interaction ports. It follows that the system
is passive with respect to the input ports, i.e., the control port
and the interaction port.

B. Input/Output Representation of Port-Hamiltonian Systems
The Dirac structure representation of a system, as given

in the previous Section, does not consider causality. This
representation is close to the physical reality, since causality is
an artificial concept. However, often it is more convenient to
consider a causal representation of the system dynamics, with
respect to the input port, i.e., the composition of the interaction
port and the control port. Therefore, we define the system state
manifoldX , with coordinates x, and assume that it is a Poisson
manifold and satisfies the integrability conditions [20]. Under
these conditions, we can derive the input/output representation
of the port-Hamiltonian system.
The Hamiltonian energy function H : X → R is defined

as a smooth function on the state manifold X . In addition,
we consider the port interaction space Wx, which is a vector
bundle over X . The power conjugate variables (u, y) of the
input port then belong to Wx × W ∗

x . Let φx denote a linear
map from Wx to TxX and φ∗

x its dual, and let Jx denote
a Poisson tensorfield, which defines a fibre bundle morphism
from T ∗

xX to TxX . The port-Hamiltonian system can then be
represented as

ẋ = Jx dH(x) + φx u

y = φ∗
x dH(x)

(7)

where dH(x) denotes the differential of the Hamiltonian
energy function H(x). The coordinate function x is the state
of the system, and the port variables u and y can be considered
as inputs and outputs of the system, respectively.
If we choose local coordinates on X , we can write (7) as

ẋ = J(x)
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(8)

where the skew-symmetric matrix J(x) represents the network
topology between the ports, and thus represents the Dirac
structure. In local coordinates, it is also more apparent how
the dissipative element defined in (5) can be included into
the system dynamics. Indeed, by letting the pair (u, y) only
represent the ports by which the system interacts with other
systems, i.e., the composition of the control port and the
interaction port, the system dynamics are given by

ẋ =
�
J(x)−R(x)

�∂H
∂x

(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

(9)

with R(x) = RT (x) ≥ 0 a positive semi-definite matrix.

A
e

f
B

Fig. 2. Interconnection of two port-Hamiltonian systems A and B - The
power flow �e|f� is defined positive in the direction of the bond, i.e., the half
arrow.

D

eR fR

R

eI

fI

eC fC

eS

fS
C

Fig. 3. Bond graph representation of a port-Hamiltonian system - The D
is the Dirac structure, the C-element represents energy storage and the R-
element energy dissipation.

C. Bond Graph Representation
The concept of power conjugate variables, and thus of power

flows, lends itself for a compact graphical representation. In
Figure 2, the interconnection of two port-Hamiltonian systems
A and B is shown. The power flow between the two systems
is represented by a bond, i.e., the half arrow. In particular,
the power flow �e|f� is defined positive in the direction of
the half arrow. In this example, the systems A and B can
be port-Hamiltonian systems, as given in (9), or, on a more
conceptual level, power continuous interconnection structures
as defined in (2), energy storing elements as defined in (3) or
energy dissipating elements as defined in (4).
Using the concept of bond graphs, we can graphically rep-

resent the concept of a port-Hamiltonian system of Figure 1,
as shown in Figure 3, in which the multi-bonds indicate a
multidimensional interconnection. Note that in order to comply
with the power continuity constraint (2), all bonds must have
the same orientation with respect to the Dirac structure.

IV. VARIABLE STIFFNESS ACTUATORS AS
PORT-HAMILTONIAN SYSTEMS

With the aim of getting more insights into the power flows
between the variable stiffness actuator, the controller, and the
actuator output, in this Section, we present a port based model
of variable stiffness actuators. This model was first presented
in [12], but we provide here an extension to include a load,
and a more detailed analysis of its properties and behavior.

A. Variable Stiffness Port
To get a better understanding of variable stiffness actuators,

we first model the concept of a variable stiffness port. In this
concept, the behavior of a linear spring is modulated by an
external variable, so that at the port the spring appears to have
a variable stiffness.

Figure 8.2: Bond graph representation of a generic physical system—The D is the Dirac structure,
the C represents the energy storage element and the R the energy dissipation element.

system of Figure 8.1 as in Figure 8.2, where the half arrows are multi-bonds and
denote the multidimensional interconnections between the different parts of the
system. Note that the power flow �e|f� is defined positive in the direction of the
half-arrow, and, in order to comply with the power continuity constraint (8.1), all
bonds must have the same orientation with respect to the Dirac structure.

Throughout the paper, some fundamental interconnection elements are used to
detail the Dirac structure that models the variable stiffness actuators. Essentially,
these elements are examples of Dirac structures and, since a composition of Dirac
structures is again a Dirac structure, these basic elements can give more insights
when modeling the behavior of a complex system. Specifically,

• a 1-junction defines a common flow interconnection, e.g. a rigid connection
between two masses such as the actuator output port and a load. In order to
satisfy (8.1), the behavior of a 1-junction, with N connected bonds, satisfies

f1 = · · · = fN ,
N�

i=1

ei = 0 (8.4)

• the dual of a 1-junction is a 0-junction, which defines a common effort inter-
connection. The behavior of a 0-junction, for N connected bonds, is given
by

N�

i=1

fi = 0, e1 = · · · = eN (8.5)

• a MTF-element (Modulated TransFormer) defines a power continuous trans-
formation between two ports. An example is an ideal gearbox: if the input
and the output of the gearbox are characterized by power conjugate variables
(fin, ein) and (fout, eout) and α is the transformation ratio (either a scalar or
a matrix), the behavior for the two ports is described by

fout = α fin, ein = αT eout
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It is readily verified that any combination of these elements again yields a power
continuous interconnection structure.

8.3 Port-based Model of Variable Stiffness Actu-
ators

In this Section, we describe a generic port-based model of variable stiffness actu-
ators. This is possible by identifying common components of the actuators, and
describing the interconnection among these components by means of a generic Dirac
structure. For any actuator, a specific representation of the Dirac structure can be
found by explicitly describing the kinematics of its design. Dynamic properties of
different designs can then be derived by analyzing the respective Dirac structures.
The generic port-based model has been introduced in [68, 67], and here we intend
to revisit the aspects relevant for the remainder of this paper.

8.3.1 Variable Stiffness Actuators as Dirac Structures

In deriving a generic model for variable stiffness actuators, we assume that:

• the actuator output is one dimensional, and is characterized by the general-
ized configuration variable r ∈ R;

• the actuator has a number ns of internal elastic elements, e.g. springs, which
can be either linear or nonlinear. The elastic elements are characterized by
state s ∈ S, and by the positive semidefinite energy function H(s) : S → R
that describes the amount of stored elastic energy;

• internally, there are nq ≥ ns actuated degrees of freedom, characterized by
the generalized configuration variables q ∈ Q. These degrees of freedom
determine how the elastic elements are sensed at the output and, in particu-
lar, they determine the apparent output stiffness K of the actuator, locally
defined as

K :=
δF

δr

i.e., the ratio of the infinitesimal change of the actuator generalized output
force δF as a result of an infinitesimal displacement of the actuator output
position δr.

Moreover, in our model, we ignore internal friction and inertias, since we focus on
the working principles and on the kinematics of the actuator design, rather than
on the details of the implementation.

By these assumptions, we identify the common components of the different
variable stiffness actuator designs, i.e. the elastic elements, the internal degrees of
freedom, and the interaction port. From the analysis of the kinematics, we derive
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C
..

H(s)

D
eS

fS

eC fC

eI

fI

Fig. 3. Port-based representation of variable stiffness actuators - The D-
element represents the Dirac structure. The internal elastic elements are
represented by the multidimensional C-element, with state s and elastic energy
function H(s). The internal degrees of freedom are actuated via the control
port (fC , eC), while the interconnection with the load is via the output port
(fI , eI).

conjugate variables, that can be expressed in a matrix form as



fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (6)

in which the matrix D(q, r) represents the Dirac structure. The
skew-symmetry of D(q, r) establishes the power continuity of
the interconnection, as stated in (1).

The Dirac structure of Figure 3 is made explicit in Figure 4.
The MTF-elements implement the maps A(q, r) and B(q, r),
such that

f̄C = A(q, r) fC , eC = AT (q, r) ēC

f̄I = B(q, r) fI , eI = BT (q, r) ēI

where the port variables (f̄C , ēC), (f̄I , ēI) and (f̄S , ēS) are
introduced on the corresponding bonds. The 0-junction repre-
sents a power continuous common effort connection, defined
in (5), such that

f̄S = f̄I + f̄C , ēS = ēI = ēC

The Dirac structure representation is completed with the 1-
junction, which realizes a power continuous common flow
connection as defined in (4), such that

fS = f̄S , ēS = −eS

It is readily verified that Figure 4 implements (6).
The sub-matrix A(q, r) defines the relation between the

rate of change of the state s of the elastic elements and the
rate of change of the configuration of the internal degrees
of freedom q. Similarly, the sub-matrix B(q, r) defines the
relation between the rate of change of the state s of the springs
and the rate of change of the output position r. Hence, the
exact structure of A(q, r) and B(q, r) can be derived from a
kinematic analysis of the actuator design.

B. Kinematic Structure of Variable Stiffness Actuators

It is assumed that the state s of the internal elastic elements
is determined by the configuration q of the internal degrees of
freedom and the output position r via the kinematic relation

λ : Q×R → S
(q, r) �→ s

(7)

C
..

H(s)

eS

fS
1

ēS

f̄S
0

ēI

f̄I
MTF

..

B(q,r)

eI

fI
ēC f̄C

MTF:A(q,r)

eC fC

Fig. 4. Variable stiffness actuators - The Dirac structure expressed in (6) can
be detailed by using two MTF-elements, which implement the maps defined
by A(q, r) and B(q, r). The 1- and 0-junctions implement power continuous
connections, with common flow and common effort, respectively.

Note that the variables q and r are independent from each other
and their configuration determines the state of the internal
elastic elements.

The tangent map λ∗ : TqQ×TrR → TsS and the cotangent
map λ∗ : T ∗

s S → T ∗
q Q × T ∗

r R are naturally defined [18],
where TqQ (T ∗

q Q), TrR (T ∗
r R) and TsS (T ∗

s S) are the tangent
(cotangent) spaces to the manifolds Q, R and S at q, r and
s, respectively.

The tangent maps can be expressed in the natural coordi-
nates on the tangent space as

λ∗ =

�
∂λ

∂q
(q, r),

∂λ

∂r
(q, r)

�
=: (A(q, r), B(q, r))

Dually, the cotangent map can be expressed in the natural
coordinates as

λ∗ =

�
∂Tλ

∂qT
(q, r),

∂Tλ

∂rT
(q, r)

�
=:

�
AT (q, r), BT (q, r)

�

which completes the mathematical representation of the Dirac
structure (6).

As observed already from (6), the tangent maps define the
rate of change of the state s of the elastic elements as a result
of the flows fC and fI . In particular, considering the natural
coordinates on the tangent spaces, we have

ṡ = A(q, r)q̇ +B(q, r)ṙ (8)

In Figure 5, the tangent map λ∗ is visualized. More specif-
ically, note that each one of the maps defined by A(q, r)
and B(q, r) have an image space, which is a subspace of the
tangent space TsS . The dimensions of the image of A(q, r)
depend on the number of internal elastic elements and the
number of internal degrees of freedom, while the image of
B(q, r) is always one-dimensional, since the actuator output
is assumed to have only one degree of freedom.

Under the map λ∗, it follows that eC = −AT (q, r)eS and
eI = −BT (q, r)eS , which state that the efforts τ and F
depend on the effort eS generated by the elastic elements. In
particular, considering the natural coordinates on the cotangent
space, the effort eS is given by ∂H

∂s and, through the map
AT (q, r) and the map BT (q, r) respectively, we obtain

τ = −AT (q, r)
∂H

∂s
, F = −BT (q, r)

∂H

∂s
We use this kinematic analysis to compute the power flows

in variable stiffness actuators and, more specifically, in the
various bonds of the model depicted in Figure 4.

Figure 8.3: Port-based representation of variable stiffness actuators—The D-element represents
the Dirac structure. The internal elastic elements are represented by the multidimensional C-
element, with state s and elastic energy function H(s). The internal degrees of freedom are
actuated via the control port (fC , eC), while the interconnection with the load is via the output
port (fI , eI).

how the different components are interconnected and how the power flows among
them.

The generic model of a variable stiffness actuator is depicted, by means of bond
graphs, in Figure 8.3. The C-element represents the storage of elastic energy by
the internal elastic elements. The power conjugate variables (fS , eS) are

ṡ = fS , eS =
∂H

∂s
(s)

The control port is characterized by the power conjugate variables (fC , eC), which
correspond to (q̇, τ), i.e. the rate of change of the configuration variables q of the
internal degrees of freedom and the collocated generalized forces τ , respectively.
The interaction port is characterized by the power conjugate variables (fI , eI),
which correspond to (ṙ, F ), i.e. the rate of change of the actuator output position
r and the generalized output force F . The Dirac structure D(q, r) defines the
interconnection and it is explicitly allowed to depend on the configuration variables
q and r. The requirement of power continuity imposes a constraint relation between
the power conjugate variables, that can be expressed in a matrix form as




fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (8.6)

in which the matrix D(q, r) represents the Dirac structure. The skew-symmetry of
D(q, r) establishes the power continuity of the interconnection, as stated in (8.1).

The Dirac structure of Figure 8.3 is made explicit in Figure 8.4. The MTF-
elements implement the maps A(q, r) and B(q, r), such that

f̄C = A(q, r) fC , eC = AT (q, r) ēC

f̄I = B(q, r) fI , eI = BT (q, r) ēI
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Fig. 3. Port-based representation of variable stiffness actuators - The D-
element represents the Dirac structure. The internal elastic elements are
represented by the multidimensional C-element, with state s and elastic energy
function H(s). The internal degrees of freedom are actuated via the control
port (fC , eC), while the interconnection with the load is via the output port
(fI , eI).

conjugate variables, that can be expressed in a matrix form as



fS
eC
eI



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D(q,r)




eS
fC
fI



 (6)

in which the matrix D(q, r) represents the Dirac structure. The
skew-symmetry of D(q, r) establishes the power continuity of
the interconnection, as stated in (1).

The Dirac structure of Figure 3 is made explicit in Figure 4.
The MTF-elements implement the maps A(q, r) and B(q, r),
such that

f̄C = A(q, r) fC , eC = AT (q, r) ēC

f̄I = B(q, r) fI , eI = BT (q, r) ēI

where the port variables (f̄C , ēC), (f̄I , ēI) and (f̄S , ēS) are
introduced on the corresponding bonds. The 0-junction repre-
sents a power continuous common effort connection, defined
in (5), such that

f̄S = f̄I + f̄C , ēS = ēI = ēC

The Dirac structure representation is completed with the 1-
junction, which realizes a power continuous common flow
connection as defined in (4), such that

fS = f̄S , ēS = −eS

It is readily verified that Figure 4 implements (6).
The sub-matrix A(q, r) defines the relation between the

rate of change of the state s of the elastic elements and the
rate of change of the configuration of the internal degrees
of freedom q. Similarly, the sub-matrix B(q, r) defines the
relation between the rate of change of the state s of the springs
and the rate of change of the output position r. Hence, the
exact structure of A(q, r) and B(q, r) can be derived from a
kinematic analysis of the actuator design.

B. Kinematic Structure of Variable Stiffness Actuators

It is assumed that the state s of the internal elastic elements
is determined by the configuration q of the internal degrees of
freedom and the output position r via the kinematic relation

λ : Q×R → S
(q, r) �→ s

(7)
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ēS

f̄S
0

ēI
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Fig. 4. Variable stiffness actuators - The Dirac structure expressed in (6) can
be detailed by using two MTF-elements, which implement the maps defined
by A(q, r) and B(q, r). The 1- and 0-junctions implement power continuous
connections, with common flow and common effort, respectively.

Note that the variables q and r are independent from each other
and their configuration determines the state of the internal
elastic elements.

The tangent map λ∗ : TqQ×TrR → TsS and the cotangent
map λ∗ : T ∗

s S → T ∗
q Q × T ∗

r R are naturally defined [18],
where TqQ (T ∗

q Q), TrR (T ∗
r R) and TsS (T ∗

s S) are the tangent
(cotangent) spaces to the manifolds Q, R and S at q, r and
s, respectively.

The tangent maps can be expressed in the natural coordi-
nates on the tangent space as

λ∗ =

�
∂λ

∂q
(q, r),

∂λ

∂r
(q, r)

�
=: (A(q, r), B(q, r))

Dually, the cotangent map can be expressed in the natural
coordinates as

λ∗ =

�
∂Tλ

∂qT
(q, r),

∂Tλ

∂rT
(q, r)

�
=:

�
AT (q, r), BT (q, r)

�

which completes the mathematical representation of the Dirac
structure (6).

As observed already from (6), the tangent maps define the
rate of change of the state s of the elastic elements as a result
of the flows fC and fI . In particular, considering the natural
coordinates on the tangent spaces, we have

ṡ = A(q, r)q̇ +B(q, r)ṙ (8)

In Figure 5, the tangent map λ∗ is visualized. More specif-
ically, note that each one of the maps defined by A(q, r)
and B(q, r) have an image space, which is a subspace of the
tangent space TsS . The dimensions of the image of A(q, r)
depend on the number of internal elastic elements and the
number of internal degrees of freedom, while the image of
B(q, r) is always one-dimensional, since the actuator output
is assumed to have only one degree of freedom.

Under the map λ∗, it follows that eC = −AT (q, r)eS and
eI = −BT (q, r)eS , which state that the efforts τ and F
depend on the effort eS generated by the elastic elements. In
particular, considering the natural coordinates on the cotangent
space, the effort eS is given by ∂H

∂s and, through the map
AT (q, r) and the map BT (q, r) respectively, we obtain

τ = −AT (q, r)
∂H

∂s
, F = −BT (q, r)

∂H

∂s
We use this kinematic analysis to compute the power flows

in variable stiffness actuators and, more specifically, in the
various bonds of the model depicted in Figure 4.

Figure 8.4: Variable stiffness actuators—The Dirac structure expressed in (8.6) can be detailed
by using two MTF-elements, which implement the maps defined by A(q, r) and B(q, r). The 1-
and 0-junctions implement power continuous connections, with common flow and common effort,
respectively.

where the port variables (f̄C , ēC), (f̄I , ēI) and (f̄S , ēS) are introduced on the cor-
responding bonds. The 0-junction represents a power continuous common effort
connection, defined in (8.5), such that

f̄S = f̄I + f̄C , ēS = ēI = ēC

The Dirac structure representation is completed with the 1-junction, which realizes
a power continuous common flow connection as defined in (8.4), such that

fS = f̄S , ēS = −eS

It is readily verified that Figure 8.4 implements (8.6).
The sub-matrix A(q, r) defines the relation between the rate of change of the

state s of the elastic elements and the rate of change of the configuration of the
internal degrees of freedom q. Similarly, the sub-matrix B(q, r) defines the relation
between the rate of change of the state s of the springs and the rate of change of
the output position r. Hence, the exact structure of A(q, r) and B(q, r) can be
derived from a kinematic analysis of the actuator design.

8.3.2 Kinematic Structure of Variable Stiffness Actuators

It is assumed that the state s of the internal elastic elements is determined by the
configuration q of the internal degrees of freedom and the output position r via the
kinematic relation

λ : Q×R → S
(q, r) �→ s

(8.7)

Note that the variables q and r are independent from each other and their config-
uration determines the state of the internal elastic elements.

The tangent map λ∗ : TqQ × TrR → TsS and the cotangent map λ∗ : T ∗
s S →

T ∗
q Q × T ∗

r R are naturally defined [42], where TqQ (T ∗
q Q), TrR (T ∗

r R) and TsS
(T ∗

s S) are the tangent (cotangent) spaces to the manifolds Q, R and S at q, r and
s, respectively.
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The tangent maps can be expressed in the natural coordinates on the tangent
space as

λ∗ =

�
∂λ

∂q
(q, r),

∂λ

∂r
(q, r)

�
=: (A(q, r), B(q, r))

Dually, the cotangent map can be expressed in the natural coordinates as

λ∗ =

�
∂Tλ

∂qT
(q, r),

∂Tλ

∂rT
(q, r)

�
=:

�
AT (q, r), BT (q, r)

�

which completes the mathematical representation of the Dirac structure (8.6).
As observed already from (8.6), the tangent maps define the rate of change of

the state s of the elastic elements as a result of the flows fC and fI . In particular,
considering the natural coordinates on the tangent spaces, we have

ṡ = A(q, r)q̇ +B(q, r)ṙ (8.8)

In Figure 8.5, the tangent map λ∗ is visualized. More specifically, note that each
one of the maps defined by A(q, r) and B(q, r) have an image space, which is a
subspace of the tangent space TsS. The dimensions of the image of A(q, r) depend
on the number of internal elastic elements and the number of internal degrees of
freedom, while the image of B(q, r) is always one-dimensional, since the actuator
output is assumed to have only one degree of freedom.

Under the map λ∗, it follows that eC = −AT (q, r)eS and eI = −BT (q, r)eS ,
which state that the efforts τ and F depend on the effort eS generated by the elastic
elements. In particular, considering the natural coordinates on the cotangent space,
the effort eS is given by ∂H

∂s and, through the map AT (q, r) and the map BT (q, r)
respectively, we obtain

τ = −AT (q, r)
∂H

∂s
, F = −BT (q, r)

∂H

∂s

We use this kinematic analysis to compute the power flows in variable stiffness
actuators and, more specifically, in the various bonds of the model depicted in
Figure 8.4.

8.4 Power Flow Analysis

In this Section, we provide a detailed study of the power flows in variable stiffness
actuators using the port-based model presented in the previous Section 8.3. By
analyzing the kinematic structure of the actuators, we highlight the power trans-
ferred from the control port, i.e. the internal degrees of freedom, to the internal
elastic elements and to the output port. This analysis is facilitated by a change of
coordinates on TsS and T ∗

s S that makes these power flows explicit. In particular,
while the Dirac structure (8.6) describes the power distribution inside the variable
stiffness actuator, it does not explicitly quantify the power exchange between the
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TsS

TqQ TrR
q̇ ṙ

S

Q R

im A(q,r) im B(q,r)

A(q,r) :TqQ→TsS B(q,r) :TrR→TsS

Fig. 5. Maps between the tangent spaces TqQ, TrR and TsS - The image
spaces of the maps A(q, r) and B(q, r) are subspaces of TsS.

IV. POWER FLOW ANALYSIS

In this Section, we provide a detailed study of the power
flows in variable stiffness actuators using the port-based
model presented in the previous Section III. By analyzing the
kinematic structure of the actuators, we highlight the power
transferred from the control port, i.e. the internal degrees of
freedom, to the internal elastic elements and to the output port.
This analysis is facilitated by a change of coordinates on TsS
and T ∗

s S that makes these power flows explicit. In particular,
while the Dirac structure (6) describes the power distribution
inside the variable stiffness actuator, it does not explicitly
quantify the power exchange between the control and the
output ports. A proper change of coordinates, as detailed in
this Section, allows to determine how much control power
can reach the output port. This is based on an analysis of the
kinematics of the actuator and, more specifically, by examining
the relation between the rate of change of the configuration
variables of the actuation system, i.e., ṡ, q̇, ṙ, as defined by the
maps between the tangent spaces described in Section III-B.

A. Change of Coordinates

The power flow between the internal elastic elements, the
control and the interaction ports is implicitly described by (3)
and, in natural coordinates, is given by

�∂H
∂s

|ṡ� = �∂H
∂s

|A(q, r)q̇�+ �∂H
∂s

|B(q, r)ṙ�

in which we assume that no dissipation is internally present.
This means that the power flows are determined by the tangent
maps A(q, r) and B(q, r). To further investigate the power
flows, we define a new set of coordinates on TsS and T ∗

s S
by using the image of the map B(q, r).

Since the actuator output has only one degree of freedom,
i.e., r is one dimensional, the image of the tangent map B(q, r)
is also one dimensional and, in particular, it defines a line on
TsS . Let b� be a unit vector such that

im B(q, r) = span {b�}

Then, a set of ns − 1 unit vectors b⊥ exists, such that

span {b⊥} = im B⊥(q, r)

The subspace im B⊥(q, r) is the orthogonal complement to
im B(q, r) and, therefore, it is of dimension ns−1. This means

that {b�, b⊥} form a set of coordinate vectors that spans the
tangent space TsS , i.e., TsS = im B(q, r)⊕ im B⊥(q, r).

Orthogonality on the tangent space TsS is only defined if
a proper metric is defined on it. Elements from TsS represent
the rate of change of the state s of the elastic elements, which
may be equivalently considered as infinitesimal displacements
δs. A physically meaningful metric to measure δs is the
stiffness matrix [19], [20]. As stated in [21], in a conservative
system, the stiffness matrix in configuration space coordinates
is given by the Hessian of the potential energy function, and
can be shown to be a symmetric (0, 2)-tensor, and is thus a
valid metric on TsS . In our case, if we consider the natural
coordinates on TsS , the metric M is therefore given by

M =
∂2H

∂s2

where H(s) describes the amount of elastic energy stored in
the elastic elements. Note that the norm �δs�2M = δsTMδs,
induced by the metric M , has the unit of energy. If friction in
the system is modeled, a different metric should be considered
since the hypothesis of a conservative system is not valid
anymore.

As the metric M defines the inner product on TsS , the set
b⊥ is found by requiring

�b�, b⊥i �M = 0, i = 1, . . . , ns − 1

where �·, ·�M denotes the inner product with respect to the
metric M .

We can now define a change of coordinates from the natural
coordinates on TsS to the new defined coordinates. Let Sb be
a matrix describing the change of coordinates as

Sb =
�
b� b⊥

�
(9)

Note that Sb depends on the state s of the elastic elements. If ṡ
is an element of TsS , expressed in the natural coordinates, and
ṡb the same element, expressed in the coordinates {b�, b⊥}, it
follows that

ṡ = Sbṡ
b (10)

and, since the change of coordinates is by construction invert-
ible, it follows that ṡb = S−1

b ṡ.
The elements on TsS defined in (8) can be expressed in the

new coordinates. In particular, we have

ṡb = S−1
b ṡ

= S−1
b (A(q, r)q̇ +B(q, r)ṙ)

=: S−1
b (ṡq + ṡr)

=:

�
ṡ�q

ṡ⊥q

�
+

�
ṡ�r

ṡ⊥r

�
=:

�
ṡ�

ṡ⊥

� (11)

The element ṡ⊥r is zero by construction of the coordinate set.
Essentially, with this change of coordinates, from the real

elastic element C with state s, we create two virtual storage
elements C� and C⊥, with states s� and s⊥, respectively. By
construction, the state s� is one-dimensional, and the state s⊥

has dimension ns − 1. This scenario is depicted in Figure 6.
From (11), it can be noted that the virtual storage elements
C⊥ is not connected to the output, i.e., it captures the energy

Figure 8.5: Maps between the tangent spaces TqQ, TrR and TsS—The image spaces of the maps
A(q, r) and B(q, r) are subspaces of TsS.

control and the output ports. A proper change of coordinates, as detailed in this
Section, allows to determine how much control power can reach the output port.
This is based on an analysis of the kinematics of the actuator and, more specifically,
by examining the relation between the rate of change of the configuration variables
of the actuation system, i.e., ṡ, q̇, ṙ, as defined by the maps between the tangent
spaces described in Section 8.3.2.

8.4.1 Change of Coordinates

The power flow between the internal elastic elements, the control and the inter-
action ports is implicitly described by (8.3) and, in natural coordinates, is given
by

�∂H
∂s

|ṡ� = �∂H
∂s

|A(q, r)q̇�+ �∂H
∂s

|B(q, r)ṙ�

in which we assume that no dissipation is internally present. This means that the
power flows are determined by the tangent maps A(q, r) and B(q, r). To further
investigate the power flows, we define a new set of coordinates on TsS and T ∗

s S by
using the image of the map B(q, r).

Since the actuator output has only one degree of freedom, i.e., r is one di-
mensional, the image of the tangent map B(q, r) is also one dimensional and, in
particular, it defines a line on TsS. Let b� be a unit vector such that

im B(q, r) = span {b�}

Then, a set of ns − 1 unit vectors b⊥ exists, such that

span {b⊥} = im B⊥(q, r)

The subspace im B⊥(q, r) is the orthogonal complement to im B(q, r) and, there-
fore, it is of dimension ns − 1. This means that {b�, b⊥} form a set of coordinate
vectors that spans the tangent space TsS, i.e., TsS = im B(q, r)⊕ im B⊥(q, r).
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Orthogonality on the tangent space TsS is only defined if a proper metric is de-
fined on it. Elements from TsS represent the rate of change of the state s of the elas-
tic elements, which may be equivalently considered as infinitesimal displacements
δs. A physically meaningful metric to measure δs is the stiffness matrix [25, 24].
As stated in [76], in a conservative system, the stiffness matrix in configuration
space coordinates is given by the Hessian of the potential energy function, and can
be shown to be a symmetric (0, 2)-tensor, and is thus a valid metric on TsS. In
our case, if we consider the natural coordinates on TsS, the metric M is therefore
given by

M =
∂2H

∂s2

where H(s) describes the amount of elastic energy stored in the elastic elements.
Note that the norm �δs�2M = δsTMδs, induced by the metric M , has the unit of
energy. If friction in the system is modeled, a different metric should be considered
since the hypothesis of a conservative system is not valid anymore.

As the metric M defines the inner product on TsS, the set b⊥ is found by
requiring

�b�, b⊥i �M = 0, i = 1, . . . , ns − 1

where �·, ·�M denotes the inner product with respect to the metric M .
We can now define a change of coordinates from the natural coordinates on

TsS to the new defined coordinates. Let Sb be a matrix describing the change of
coordinates as

Sb =
�
b� b⊥

�
(8.9)

Note that Sb depends on the state s of the elastic elements. If ṡ is an element of
TsS, expressed in the natural coordinates, and ṡb the same element, expressed in
the coordinates {b�, b⊥}, it follows that

ṡ = Sbṡ
b (8.10)

and, since the change of coordinates is by construction invertible, it follows that
ṡb = S−1

b ṡ.
The elements on TsS defined in (8.8) can be expressed in the new coordinates.

In particular, we have

ṡb = S−1
b ṡ

= S−1
b (A(q, r)q̇ +B(q, r)ṙ)

=: S−1
b (ṡq + ṡr)

=:

�
ṡ�q

ṡ⊥q

�
+

�
ṡ�r

ṡ⊥r

�
=:

�
ṡ�

ṡ⊥

�
(8.11)

The element ṡ⊥r is zero by construction of the coordinate set.
Essentially, with this change of coordinates, from the real elastic element C

with state s, we create two virtual storage elements C� and C⊥, with states s� and
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b
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COORDINATE
CHANGE

Fig. 6. Visualization of the virtual storage elements - The change of
coordinates S−1

b can be realized by two MTF-elements and a power splitter
(the diagonally-oriented line). The two C-elements, i.e., C� and C⊥, represent
the virtual storage elements.

supplied via the control port without redistributing it to the
output.

B. Power Flows
Only when the change of coordinates (10) is also applied to

elements of the cotangent space T ∗
s S , the power flows to C�

and C⊥ can be analyzed. On T ∗
s S , the change of coordinates

results in the transformation of efforts as [18]

∂TH

∂sT
Sb =:

�
F �
S F⊥

S

�
(12)

The port behavior of the two virtual storage elements C� and
C⊥ can now be properly defined by using (11) and (12), i.e.,

ṡ� = ṡ�q + ṡ�r , e�S = F �
S

ṡ⊥ = ṡ⊥q , e⊥S = F⊥
S

The power supplied via the control port is given by

PC = �eC |fC� = −�AT (q, r) eS |q̇� = −�∂H
∂s

|ṡq�

and expressions for the power flows from the control port
toward the two virtual storage elements are

P �
C = −�F �

S |ṡ�q� (13)
P⊥
C = −�F⊥

S |ṡ⊥q � (14)

It is readily verified that the change of coordinates is power
continuous, i.e.,

P �
C + P⊥

C = PC

Remark 4.1: Note that the dynamical behavior of the load
is not modeled and, therefore, the proposed analysis is task-
independent. The power flow PL to the load is given by PL =
PC − P � − P⊥, in which P � cannot be computed. However,
since there is a direct connection between C� and the output,

by means of the 0-junction, the power flow P � can be used to
do work on the output. On the other hand, the power flow P⊥

is completely captured by C⊥. It represents the power supplied
by the control port, which cannot be used to do any work on
the output, but is instead internally stored in the actuator due
to its kinematic structure. �

Remark 4.2: The image of the map B(q, r) defines an
involutive distribution on S with dimension one, since the
output has only one degree of freedom. If the set {b⊥} is not
empty, then, for any configuration (q, r), there exists a foliation
Sr that is the integral manifold of this distribution [18]. This
integral manifold is also one-dimensional. Since the energy
function H(s) is positive semidefinite by definition, it has a
minimum on Sr, which defines how much energy can go out
from the elastic elements via the output port. This minimum
is however, in general, not the same as the global minimum
of H(s) on S . Hence, there is energy stored in the elastic
elements that cannot be used to do work on the output. �

C. Power Flow Ratio

The change of coordinates and the subsequent definition
of power flows in (13) and (14), as visualized in Figure 6,
give rise to the definition of a power flow ratio. As already
observed, the virtual power flow P⊥

C is disconnected from the
output, and thus it cannot be used to do work at the output.
Intuitively, the ratio

µ =
P⊥
C

PC
(15)

indicates how much of the power supplied via the control port
is, in fact, captured by the virtual storage element C⊥ and,
therefore, lost: the lower this measure is, the less energy is
captured by the elastic elements. Note that µ ∈ [0, 1].

Since the coordinate change is configuration dependent, the
power flow ratio µ is a dynamic measure of power flows. The
rationale in this analysis is that instantaneous power provided
by the controller should provide an instantaneous power flow
to the output and should closely match the provided power
flow from the controller.

V. ANALYSIS OF CONCEPTUAL VARIABLE STIFFNESS
ACTUATOR DESIGNS

In this Section, we analyze the working principles of three
designs of variable stiffness actuators, which realize a variable
output stiffness by means of different kinematic structures. As
follows from the previous Sections, the power flows to the
virtual storage elements are defined by the maps A(q, r) and
B(q, r), i.e., by the kinematic properties of the actuator design.
First, we present the model of the designs in a port-based
formalism, and then we proceed by evaluating the power flow
ratio µ, as defined in (15).

A. Design Based on a Lever Arm of Variable Length

In some designs, such as the vsaUT [10], [11], AwAS [12],
AwAS-II [13] and HDAU [14], the change of the output
stiffness is realized through a change of the transmission ratio

Figure 8.6: Visualization of the virtual storage elements—The change of coordinates S−1
b can

be realized by two MTF-elements and a power splitter (the diagonally-oriented line). The two
C-elements, i.e., C� and C⊥, represent the virtual storage elements.

s⊥, respectively. By construction, the state s� is one-dimensional, and the state
s⊥ has dimension ns − 1. This scenario is depicted in Figure 8.6. From (8.11), it
can be noted that the virtual storage elements C⊥ is not connected to the output,
i.e., it captures the energy supplied via the control port without redistributing it
to the output.

8.4.2 Power Flows

Only when the change of coordinates (8.10) is also applied to elements of the
cotangent space T ∗

s S, the power flows to C� and C⊥ can be analyzed. On T ∗
s S,

the change of coordinates results in the transformation of efforts as [42]

∂TH

∂sT
Sb =:

�
F �
S F⊥

S

�
(8.12)

The port behavior of the two virtual storage elements C� and C⊥ can now be
properly defined by using (8.11) and (8.12), i.e.,

ṡ� = ṡ�q + ṡ�r , e�S = F �
S

ṡ⊥ = ṡ⊥q , e⊥S = F⊥
S



87

The power supplied via the control port is given by

PC = �eC |fC� = −�AT (q, r) eS |q̇� = −�∂H
∂s

|ṡq�

and expressions for the power flows from the control port toward the two virtual
storage elements are

P �
C = −�F �

S |ṡ�q� (8.13)

P⊥
C = −�F⊥

S |ṡ⊥q � (8.14)

It is readily verified that the change of coordinates is power continuous, i.e.,

P �
C + P⊥

C = PC

Remark 8.1 Note that the dynamical behavior of the load is not modeled and,
therefore, the proposed analysis is task-independent. The power flow PL to the
load is given by PL = PC − P � − P⊥, in which P � cannot be computed. However,
since there is a direct connection between C� and the output, by means of the
0-junction, the power flow P � can be used to do work on the output. On the other
hand, the power flow P⊥ is completely captured by C⊥. It represents the power
supplied by the control port, which cannot be used to do any work on the output,
but is instead internally stored in the actuator due to its kinematic structure. �

Remark 8.2 The image of the map B(q, r) defines an involutive distribution on S
with dimension one, since the output has only one degree of freedom. If the set
{b⊥} is not empty, then, for any configuration (q, r), there exists a foliation Sr that
is the integral manifold of this distribution [42]. This integral manifold is also one-
dimensional. Since the energy function H(s) is positive semidefinite by definition,
it has a minimum on Sr, which defines how much energy can go out from the elastic
elements via the output port. This minimum is however, in general, not the same
as the global minimum of H(s) on S. Hence, there is energy stored in the elastic
elements that cannot be used to do work on the output. �

8.4.3 Power Flow Ratio

The change of coordinates and the subsequent definition of power flows in (8.13)
and (8.14), as visualized in Figure 8.6, give rise to the definition of a power flow
ratio. As already observed, the virtual power flow P⊥

C is disconnected from the
output, and thus it cannot be used to do work at the output. Intuitively, the ratio

µ =
P⊥
C

PC
(8.15)

indicates how much of the power supplied via the control port is, in fact, captured
by the virtual storage element C⊥ and, therefore, lost: the lower this measure is,
the less energy is captured by the elastic elements. Note that µ ∈ [0, 1].
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Since the coordinate change is configuration dependent, the power flow ratio
µ is a dynamic measure of power flows. The rationale in this analysis is that
instantaneous power provided by the controller should provide an instantaneous
power flow to the output and should closely match the provided power flow from
the controller.

8.5 Analysis of Conceptual Variable Stiffness Ac-
tuator Designs

In this Section, we analyze the working principles of three designs of variable stiff-
ness actuators, which realize a variable output stiffness by means of different kine-
matic structures. As follows from the previous Sections, the power flows to the
virtual storage elements are defined by the maps A(q, r) and B(q, r), i.e., by the
kinematic properties of the actuator design. First, we present the model of the
designs in a port-based formalism, and then we proceed by evaluating the power
flow ratio µ, as defined in (8.15).

8.5.1 Design Based on a Lever Arm of Variable Length

In some designs, such as the vsaUT [68, 67], AwAS [34], AwAS-II [35] and HDAU
[39], the change of the output stiffness is realized through a change of the trans-
mission ratio between the internal springs and the actuator output by means of a
lever arm of variable length.

As an example of this category of variable stiffness actuators, we analyze the
vsaUT, which is conceptually depicted in Figure 8.7. The working principle is
based on one zero free length linear spring, characterized by elastic constant k.
The spring is connected to the output via a lever arm of variable length, controlled
by the linear degree of freedom q1, and thus q1 determines how the spring is sensed
at the output. The linear degree of freedom q2 is used to control the actuator
output position, i.e. the configuration variable r. The design is such that the
maximum length � of the lever arm is sufficiently large compared to the maximum
elongation of the spring, so that we can assume α ≈ 0.

In order to build the port-based model of this actuator design, we analyze its
kinematics, described by (8.7). We observe that the state s of the linear zero free
length spring is given by

s = � sinφ = �
r − q2
q1

(8.16)

By taking the total derivative of (8.16), it follows

ṡ = − �

q1

�
r−q2
q1

1
� �q̇1

q̇2

�
+

�

q1
ṙ =: fS



89
7

α

−φ

q1

q2
r

−s
k

�

Fig. 7. Variable stiffness actuator using a lever arm of variable length -
The functional principle of the concept is a lever arm of variable length q1,
which connects the zero free length linear spring, with elastic constant k, to
the output. The effective length of the lever arm is determined by the linear
degree of freedom q1. The actuator output position r is controlled by the
linear degree of freedom q2 [10], [11].

between the internal springs and the actuator output by means
of a lever arm of variable length.

As an example of this category of variable stiffness actu-
ators, we analyze the vsaUT, which is conceptually depicted
in Figure 7. The working principle is based on one zero free
length linear spring, characterized by elastic constant k. The
spring is connected to the output via a lever arm of variable
length, controlled by the linear degree of freedom q1, and
thus q1 determines how the spring is sensed at the output. The
linear degree of freedom q2 is used to control the actuator
output position, i.e. the configuration variable r. The design is
such that the maximum length � of the lever arm is sufficiently
large compared to the maximum elongation of the spring, so
that we can assume α ≈ 0.

In order to build the port-based model of this actuator
design, we analyze its kinematics, described by (7). We
observe that the state s of the linear zero free length spring is
given by

s = � sinφ = �
r − q2
q1

(16)

By taking the total derivative of (16), it follows

ṡ = − �

q1

�
r−q2
q1

1
� �q̇1

q̇2

�
+

�

q1
ṙ =: fS

From this equation, we can identify the matrices A(q, r) and
B(q, r), i.e.,

A(q, r) = − �

q1

�
r−q2
q1

1
�
, B(q) =

�

q1

with which it is possible to build the skew-symmetric matrix
D(q, r) that represents the Dirac structure, as defined in (6).

Since only one spring is present, the tangent space TsS is
one-dimensional. The image of B(q, r) is given by

im B(q, r) = TsS, ∀(q, r) ∈ Q×R

It follows that the virtual storage element C⊥ has zero di-
mension, i.e., it does not appear in the diagram of Figure 6.

Therefore, all the power PC , supplied via the control port
during any nominal behavior of the actuator, goes either to
C� or to the output. This means that no power is lost, i.e., no
energy is captured by the internal springs. This means that,
for this principle design, the power flow ratio µ, as defined
in (15), is

µ = 0

This observation is in accordance with the static analysis
presented in [15], where it was shown that the designs based on
a variable length lever arm do not require any storage of energy
in the internal springs when the apparent output stiffness is
changed.

B. Design Based on an Antagonistic Spring Setup

Variable stiffness actuators, based on an antagonistic spring
setup, have been proposed in different realizations, such as the
AMASC [22], VSA [7], VSA-II [8]. In general, the designs use
nonlinear springs, that act in opposite directions on the output.
The internal degrees of freedom change the elongation of the
springs, and, in this way, they indirectly change the actuator
output position and the apparent output stiffness.

The conceptual design of a generic antagonistic variable
stiffness actuator is depicted in Figure 8. The working prin-
ciple is based on two identical nonlinear quadratic springs,
characterized by elastic constant k. The springs are in series
with two linear motors M1 and M2, which generate the two
linear displacements q1 and q2, respectively. When the motors
are operated in common mode, the actuator output stiffness is
changed. When the motors are operated in differential mode,
the actuator output position r is changed.

In order to build the port-based model of this actuator
design, we analyze its kinematics, described by (7). We
observe that the states si > 0, with i = 1, 2, of the nonlinear
springs are given by

s =

�
s1
s2

�
=

�
q1 −Rr
q2 +Rr

�
(17)

where R is the radius of the pulley and the restriction
si > 0 is assumed to simplify the equations involving the
force generated by the quadratic springs. By taking the total
derivative of (17), we obtain

ṡ =

�
ṡ1
ṡ2

�
=

�
q̇1 −Rṙ
q̇2 +Rṙ

�
=:

�
fS1

fS2

�

From this, we can identify the matrices A(q, r) and B(q, r),
i.e.,

A(q, r) =

�
1 0
0 1

�
, B(q, r) =

�
−R
R

�

with which it is possible to build the skew-symmetric matrix
D(q, r) that represents the Dirac structure, as defined in (6).

As this design presents two springs, the tangent space TsS
is two-dimensional. Let the metric M be

M =
∂2H

∂s2
=

�
2ks1 0
0 2ks2

�

Figure 8.7: Variable stiffness actuator using a lever arm of variable length—The functional prin-
ciple of the concept is a lever arm of variable length q1, which connects the zero free length linear
spring, with elastic constant k, to the output. The effective length of the lever arm is determined
by the linear degree of freedom q1. The actuator output position r is controlled by the linear
degree of freedom q2 [68, 67].

From this equation, we can identify the matrices A(q, r) and B(q, r), i.e.,

A(q, r) = − �

q1

�
r−q2
q1

1
�
, B(q) =

�

q1

with which it is possible to build the skew-symmetric matrix D(q, r) that represents
the Dirac structure, as defined in (8.6).

Since only one spring is present, the tangent space TsS is one-dimensional. The
image of B(q, r) is given by

im B(q, r) = TsS, ∀(q, r) ∈ Q×R

It follows that the virtual storage element C⊥ has zero dimension, i.e., it does not
appear in the diagram of Figure 8.6. Therefore, all the power PC , supplied via the
control port during any nominal behavior of the actuator, goes either to C� or to
the output. This means that no power is lost, i.e., no energy is captured by the
internal springs. This means that, for this principle design, the power flow ratio µ,
as defined in (8.15), is

µ = 0

This observation is in accordance with the static analysis presented in [66], where
it was shown that the designs based on a variable length lever arm do not require
any storage of energy in the internal springs when the apparent output stiffness is
changed.
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8.5.2 Design Based on an Antagonistic Spring Setup

Variable stiffness actuators, based on an antagonistic spring setup, have been pro-
posed in different realizations, such as the AMASC [33], VSA [54], VSA-II [46]. In
general, the designs use nonlinear springs, that act in opposite directions on the
output. The internal degrees of freedom change the elongation of the springs, and,
in this way, they indirectly change the actuator output position and the apparent
output stiffness.

The conceptual design of a generic antagonistic variable stiffness actuator is
depicted in Figure 8.8. The working principle is based on two identical nonlinear
quadratic springs, characterized by elastic constant k. The springs are in series
with two linear motors M1 and M2, which generate the two linear displacements q1
and q2, respectively. When the motors are operated in common mode, the actuator
output stiffness is changed. When the motors are operated in differential mode,
the actuator output position r is changed.

In order to build the port-based model of this actuator design, we analyze its
kinematics, described by (8.7). We observe that the states si > 0, with i = 1, 2, of
the nonlinear springs are given by

s =

�
s1
s2

�
=

�
q1 −Rr
q2 +Rr

�
(8.17)

where R is the radius of the pulley and the restriction si > 0 is assumed to simplify
the equations involving the force generated by the quadratic springs. By taking
the total derivative of (8.17), we obtain

ṡ =

�
ṡ1
ṡ2

�
=

�
q̇1 −Rṙ
q̇2 +Rṙ

�
=:

�
fS1

fS2

�

From this, we can identify the matrices A(q, r) and B(q, r), i.e.,

A(q, r) =

�
1 0
0 1

�
, B(q, r) =

�
−R
R

�

with which it is possible to build the skew-symmetric matrix D(q, r) that represents
the Dirac structure, as defined in (8.6).

As this design presents two springs, the tangent space TsS is two-dimensional.
Let the metric M be

M =
∂2H

∂s2
=

�
2ks1 0
0 2ks2

�

where H(s) = 1
3ks

2
1 +

1
3ks

2
2 is the elastic energy of the nonlinear quadratic springs.

The unit vector b�, computed with respect to the metric M such that �b��M = 1,
is

b� =
1�

2k(s1 + s2)

�
−1
1

�
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Fig. 8. Variable stiffness actuator using an antagonistic spring setup - This
design is based on two series elastic actuators in an antagonistic setup. The
linear motors M1 and M2 generate linear displacements q1 and q2. The
nonlinear quadratic springs have elastic constant k. By operating the motors
in common mode, the apparent output stiffness of the actuator changes, while
by operating the motors in differential mode the equilibrium of the actuator
output position r changes.

where H(s) = 1
3ks

2
1 + 1

3ks
2
2 is the elastic energy of the

nonlinear quadratic springs. The unit vector b�, computed with
respect to the metric M such that �b��M = 1, is

b� =
1�

2k(s1 + s2)

�
−1
1

�

Using the constraints on the orthogonality, i.e., �b�, b⊥�M = 0,
the unit vector b⊥, computed with respect to the metric M such
that �b⊥�M = 1, is

b⊥ =
1�

2k(s1 + s2)





�
s2
s1�
s1
s2





The change of coordinates, as defined in (9), follows

Sb =
�
b� b⊥

�
=

1�
2k(s1 + s2)




−1

�
s2
s1

1
�

s1
s2





In order to continue the power analysis presented in Sec-
tion IV, we calculate

�
ṡ�q

ṡ⊥q

�
= S−1

b A(q, r)q̇

=

�
2k(s1 + s2)

s1 + s2

�
−s1 s2√
s1s2

√
s1s2

� �
1 0
0 1

� �
q̇1
q̇2

�

=

�
2k(s1 + s2)

s1 + s2

�
−s1q̇1 + s2q̇2√
s1s2(q̇1 + q̇2)

�

The quadratic spring generate forces eS = ∂H
∂s =
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Fig. 9. Power flow ratio µ for the design based on an antagonistic spring
setup - The rate of change of the configuration variable q̇ of the internal
degrees of freedom is chosen so to achieve the desired changes in output
position (ṙ) and stiffness (K̇). The indicated areas µ1, µ2, µ3 correspond to
K̇ = 0.2 Nm/rad/s, K̇ = 0.6 Nm/rad/s and K̇ = 1.0 Nm/rad/s, respectively.
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�T , from which we obtain
�
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S
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∂sT
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�
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�
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(18)

The power flow ratio µ, as defined in (15), is given by

µ =
P⊥
C

PC
=

�F⊥
S |ṡ⊥q �

�∂H∂s |ṡq�
Since µ is a dynamic measure, we can compute it during
any nominal behavior of the variable stiffness actuator. The
power flow ratio is visualized in Figure 9, where q̇ has been
chosen such to achieve certain desired changes in output
position (ṙ) and stiffness (K̇). The areas indicate that, for
a particular (ṙ, K̇), the value of µ is in the corresponding
area. For example, the power flow ratio µ is in the area
denoted by µ1 when the output stiffness is changed with
K̇ = 0.2 Nm/rad/s and the output position r is changed
simultaneously. The actual value of µ depends on the load
of the springs, i.e., (s1, s2), and it is negatively affected by
higher preloads, which is in agreement with [15]. From (18),
it can be seen that P � = �F �

S |ṡ
�
q� = 0 if s1 = s2, and hence,

due to power continuity, µ = 1. Finally, note that the power
flow ratio increases when the stiffness change is faster.

For this particular design principle, Remark 4.2 can be
illustrated visually. In Figure 10, the surface represents the
energy function H(s) = 1

3ks
3
1 +

1
3ks

3
2 on the manifold S and

the black curves represent the energy function on the integral
manifolds Sr of B(q, r)ṙ. Restricted to these foliations, H(s)
has a minimum indicated by the dashed line. Since the matrix
A(q, r) is full rank for this design, the integral manifold
of A(q, r)q̇ is in fact equal to S . This means that, using

Figure 8.8: Variable stiffness actuator using an antagonistic spring setup—This design is based
on two series elastic actuators in an antagonistic setup. The linear motors M1 and M2 generate
linear displacements q1 and q2. The nonlinear quadratic springs have elastic constant k. By
operating the motors in common mode, the apparent output stiffness of the actuator changes,
while by operating the motors in differential mode the equilibrium of the actuator output position
r changes.

Using the constraints on the orthogonality, i.e., �b�, b⊥�M = 0, the unit vector b⊥,
computed with respect to the metric M such that �b⊥�M = 1, is

b⊥ =
1�

2k(s1 + s2)





�
s2
s1�
s1
s2





The change of coordinates, as defined in (8.9), follows

Sb =
�
b� b⊥

�
=

1�
2k(s1 + s2)
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�
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s1

1
�

s1
s2





In order to continue the power analysis presented in Section 8.4, we calculate

�
ṡ�q

ṡ⊥q

�
= S−1

b A(q, r)q̇

=
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−s1 s2√
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√
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0 1
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The quadratic spring generate forces eS = ∂H
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(8.18)

The power flow ratio µ, as defined in (8.15), is given by

µ =
P⊥
C

PC
=

�F⊥
S |ṡ⊥q �

�∂H∂s |ṡq�

Since µ is a dynamic measure, we can compute it during any nominal behavior of
the variable stiffness actuator. The power flow ratio is visualized in Figure 8.9,
where q̇ has been chosen such to achieve certain desired changes in output position
(ṙ) and stiffness (K̇). The areas indicate that, for a particular (ṙ, K̇), the value of
µ is in the corresponding area. For example, the power flow ratio µ is in the area
denoted by µ1 when the output stiffness is changed with K̇ = 0.2 Nm/rad/s and
the output position r is changed simultaneously. The actual value of µ depends on
the load of the springs, i.e., (s1, s2), and it is negatively affected by higher preloads,

which is in agreement with [66]. From (8.18), it can be seen that P � = �F �
S |ṡ

�
q� = 0

if s1 = s2, and hence, due to power continuity, µ = 1. Finally, note that the power
flow ratio increases when the stiffness change is faster.

For this particular design principle, Remark 8.2 can be illustrated visually. In
Figure 8.10, the surface represents the energy function H(s) = 1

3ks
3
1 + 1

3ks
3
2 on

the manifold S and the black curves represent the energy function on the integral
manifolds Sr of B(q, r)ṙ. Restricted to these foliations, H(s) has a minimum
indicated by the dashed line. Since the matrix A(q, r) is full rank for this design,
the integral manifold of A(q, r)q̇ is in fact equal to S. This means that, using
the control input q̇ with its corresponding control energy, it is possible to go from
any configuration on S to any other configuration. However, through the output
port, the configuration change is restricted to lie on the foliation Sr that has been
reached. Therefore, the minimum energy level, that the system can reach, is in
a local minimum of H(s). This is illustrated via the solid black curve, which
represents a generic change of configuration of the actuator. It can be seen that
in general the energy, which has been supplied via the control port, cannot be
provided completely to the output port. The actual amount of energy that is
internally stored is equal to the difference in energy levels at the end points of the
solid curve, i.e., H2 −H1.
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Fig. 8. Variable stiffness actuator using an antagonistic spring setup - This
design is based on two series elastic actuators in an antagonistic setup. The
linear motors M1 and M2 generate linear displacements q1 and q2. The
nonlinear quadratic springs have elastic constant k. By operating the motors
in common mode, the apparent output stiffness of the actuator changes, while
by operating the motors in differential mode the equilibrium of the actuator
output position r changes.

where H(s) = 1
3ks

2
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2
2 is the elastic energy of the

nonlinear quadratic springs. The unit vector b�, computed with
respect to the metric M such that �b��M = 1, is
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2k(s1 + s2)
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−1
1

�

Using the constraints on the orthogonality, i.e., �b�, b⊥�M = 0,
the unit vector b⊥, computed with respect to the metric M such
that �b⊥�M = 1, is

b⊥ =
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The change of coordinates, as defined in (9), follows
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In order to continue the power analysis presented in Sec-
tion IV, we calculate
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Fig. 9. Power flow ratio µ for the design based on an antagonistic spring
setup - The rate of change of the configuration variable q̇ of the internal
degrees of freedom is chosen so to achieve the desired changes in output
position (ṙ) and stiffness (K̇). The indicated areas µ1, µ2, µ3 correspond to
K̇ = 0.2 Nm/rad/s, K̇ = 0.6 Nm/rad/s and K̇ = 1.0 Nm/rad/s, respectively.
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The power flow ratio µ, as defined in (15), is given by

µ =
P⊥
C

PC
=

�F⊥
S |ṡ⊥q �

�∂H∂s |ṡq�
Since µ is a dynamic measure, we can compute it during
any nominal behavior of the variable stiffness actuator. The
power flow ratio is visualized in Figure 9, where q̇ has been
chosen such to achieve certain desired changes in output
position (ṙ) and stiffness (K̇). The areas indicate that, for
a particular (ṙ, K̇), the value of µ is in the corresponding
area. For example, the power flow ratio µ is in the area
denoted by µ1 when the output stiffness is changed with
K̇ = 0.2 Nm/rad/s and the output position r is changed
simultaneously. The actual value of µ depends on the load
of the springs, i.e., (s1, s2), and it is negatively affected by
higher preloads, which is in agreement with [15]. From (18),
it can be seen that P � = �F �

S |ṡ
�
q� = 0 if s1 = s2, and hence,

due to power continuity, µ = 1. Finally, note that the power
flow ratio increases when the stiffness change is faster.

For this particular design principle, Remark 4.2 can be
illustrated visually. In Figure 10, the surface represents the
energy function H(s) = 1

3ks
3
1 +

1
3ks

3
2 on the manifold S and

the black curves represent the energy function on the integral
manifolds Sr of B(q, r)ṙ. Restricted to these foliations, H(s)
has a minimum indicated by the dashed line. Since the matrix
A(q, r) is full rank for this design, the integral manifold
of A(q, r)q̇ is in fact equal to S . This means that, using

Figure 8.9: Power flow ratio µ for the design based on an antagonistic spring setup—The rate of
change of the configuration variable q̇ of the internal degrees of freedom is chosen so to achieve the
desired changes in output position (ṙ) and stiffness (K̇). The indicated areas µ1, µ2, µ3 correspond
to K̇ = 0.2 Nm/rad/s, K̇ = 0.6 Nm/rad/s and K̇ = 1.0 Nm/rad/s, respectively.

Example

The simple structure of this type of actuator allows to illustrate the theory with
a straightforward simulation experiment. We assume that a mass is attached to
the output and that, starting from a zero velocity, it should achieve a constant ṙ,
while the apparent output stiffness is changed simultaneously with constant K̇. It
follows that the control input q̇ is also constant.

Figure 8.11 presents the power flow P � to the virtual storage element C�, the
power flow P⊥ to the virtual storage element C⊥, the total power flow PC from
the control port, and the power flow PL to the load.

Initially, all power is stored as potential energy in C� and C⊥, due to the inertia
of the load, and, therefore, the power flows P � and P⊥ increase. While P � > PL,
the mass accelerates and the power PC is diverted to C� and stored as potential
energy. When P � ≤ PL, this potential energy is started to be released to the load.
Note that P⊥ is always increasing, which means that part of the control power PC

is captured by the internal springs and not used to accelerate the mass.

Figure 8.12 presents the energy balance between the energy HC supplied by
the controller and the kinetic energy HL of the load. Because, throughout the
experiment, PC > P � the controller supplies much more energy than is converted
to kinetic energy of the load. In fact, the difference HC −HL is stored internally
in the springs.
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Fig. 10. Energy function on S - The surface represents the energy function
H(s) on S. Since the image of A(q, r) spans the entire tangent space TsS,
any arbitrary point s ∈ S can be reached by a proper q̇. However, restricted
to the foliations Sr (indicated by the black lines), only a local minimum of
H(s) can be reached (indicated by the dashed line). The difference in energy
levels between the end points of the thick black curve, i.e., H2−H1, indicates
how much energy cannot be used to do work on the output.

the control input q̇ with its corresponding control energy,
it is possible to go from any configuration on S to any
other configuration. However, through the output port, the
configuration change is restricted to lie on the foliation Sr

that has been reached. Therefore, the minimum energy level,
that the system can reach, is in a local minimum of H(s).
This is illustrated via the solid black curve, which represents
a generic change of configuration of the actuator. It can be
seen that in general the energy, which has been supplied via
the control port, cannot be provided completely to the output
port. The actual amount of energy that is internally stored is
equal to the difference in energy levels at the end points of
the solid curve, i.e., H2 −H1.

Example: The simple structure of this type of actuator
allows to illustrate the theory with a straightforward simulation
experiment. We assume that a mass is attached to the output
and that, starting from a zero velocity, it should achieve a
constant ṙ, while the apparent output stiffness is changed
simultaneously with constant K̇. It follows that the control
input q̇ is also constant.

Figure 11 presents the power flow P � to the virtual storage
element C�, the power flow P⊥ to the virtual storage element
C⊥, the total power flow PC from the control port, and the
power flow PL to the load.

Initially, all power is stored as potential energy in C�

and C⊥, due to the inertia of the load, and, therefore, the
power flows P � and P⊥ increase. While P � > PL, the mass
accelerates and the power PC is diverted to C� and stored
as potential energy. When P � ≤ PL, this potential energy is
started to be released to the load. Note that P⊥ is always
increasing, which means that part of the control power PC is
captured by the internal springs and not used to accelerate the
mass.

Figure 12 presents the energy balance between the energy
HC supplied by the controller and the kinetic energy HL of
the load. Because, throughout the experiment, PC > P � the
controller supplies much more energy than is converted to
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Fig. 11. Power flow - The power supplied via the control port is used
to accelerate the mass. Initially, all the power is stored in C� and C⊥, i.e.
PL = 0, due to the inertia of the load. When P � > PL, power is flowing
towards C� and stored, but later, when P � < PL, power is flowing from C�

to the load.
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Fig. 12. Energy balance - During the acceleration of the mass the energy
supplied by the controller is bigger than the energy converted to kinetic energy
of the load.

kinetic energy of the load. In fact, the difference HC −HL is
stored internally in the springs.

C. Design based on a Mechanical Decoupling

In other designs, such as the VS-Joint [9], the change of
the apparent output stiffness and the change of the output
joint position is completely mechanically decoupled. The
conceptual design of this kind of actuators is depicted in
Figure 13. The working principle is based on two identical
nonlinear quadratic springs, characterized by elastic constant
k. The linear motor M2 generates a linear displacement q2
and is used for changing the apparent output stiffness of the
actuator. The output position r is determined by the rotational
motor M1, which directly controls the degree of freedom q1.
Note that thus the end effector can rotate independently from
the pulley. Compared with the antagonistic design presented in
Section V-B, the degree of freedom q1 realizes the differential
mode of operation of the motors M1 and M2 in the antago-
nistic design, and the degree of freedom q2 the common mode
operation.

Figure 8.10: Energy function on S—The surface represents the energy function H(s) on S. Since
the image of A(q, r) spans the entire tangent space TsS, any arbitrary point s ∈ S can be reached
by a proper q̇. However, restricted to the foliations Sr (indicated by the black lines), only a local
minimum of H(s) can be reached (indicated by the dashed line). The difference in energy levels
between the end points of the thick black curve, i.e., H2 −H1, indicates how much energy cannot
be used to do work on the output.

8.5.3 Design based on a Mechanical Decoupling

In other designs, such as the VS-Joint [75], the change of the apparent output
stiffness and the change of the output joint position is completely mechanically de-
coupled. The conceptual design of this kind of actuators is depicted in Figure 8.13.
The working principle is based on two identical nonlinear quadratic springs, charac-
terized by elastic constant k. The linear motor M2 generates a linear displacement
q2 and is used for changing the apparent output stiffness of the actuator. The out-
put position r is determined by the rotational motor M1, which directly controls
the degree of freedom q1. Note that thus the end effector can rotate independently
from the pulley. Compared with the antagonistic design presented in Section 8.5.2,
the degree of freedom q1 realizes the differential mode of operation of the motors
M1 and M2 in the antagonistic design, and the degree of freedom q2 the common
mode operation.

In order to build the port-based model of this actuator design, we analyze its
kinematics, described by (8.7). We observe that the states si > 0, with i = 1, 2, of
the nonlinear spring are given by

s =

�
s1
s2

�
=

�
q2 −Rα
q2 +Rα

�
(8.19)

where R is the radius of the pulley, α = −q1 + r + π
2 and the restriction si > 0 is

assumed to simplify the equations involving the force generated by the quadratic
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Fig. 10. Energy function on S - The surface represents the energy function
H(s) on S. Since the image of A(q, r) spans the entire tangent space TsS,
any arbitrary point s ∈ S can be reached by a proper q̇. However, restricted
to the foliations Sr (indicated by the black lines), only a local minimum of
H(s) can be reached (indicated by the dashed line). The difference in energy
levels between the end points of the thick black curve, i.e., H2−H1, indicates
how much energy cannot be used to do work on the output.

the control input q̇ with its corresponding control energy,
it is possible to go from any configuration on S to any
other configuration. However, through the output port, the
configuration change is restricted to lie on the foliation Sr

that has been reached. Therefore, the minimum energy level,
that the system can reach, is in a local minimum of H(s).
This is illustrated via the solid black curve, which represents
a generic change of configuration of the actuator. It can be
seen that in general the energy, which has been supplied via
the control port, cannot be provided completely to the output
port. The actual amount of energy that is internally stored is
equal to the difference in energy levels at the end points of
the solid curve, i.e., H2 −H1.

Example: The simple structure of this type of actuator
allows to illustrate the theory with a straightforward simulation
experiment. We assume that a mass is attached to the output
and that, starting from a zero velocity, it should achieve a
constant ṙ, while the apparent output stiffness is changed
simultaneously with constant K̇. It follows that the control
input q̇ is also constant.

Figure 11 presents the power flow P � to the virtual storage
element C�, the power flow P⊥ to the virtual storage element
C⊥, the total power flow PC from the control port, and the
power flow PL to the load.

Initially, all power is stored as potential energy in C�

and C⊥, due to the inertia of the load, and, therefore, the
power flows P � and P⊥ increase. While P � > PL, the mass
accelerates and the power PC is diverted to C� and stored
as potential energy. When P � ≤ PL, this potential energy is
started to be released to the load. Note that P⊥ is always
increasing, which means that part of the control power PC is
captured by the internal springs and not used to accelerate the
mass.

Figure 12 presents the energy balance between the energy
HC supplied by the controller and the kinetic energy HL of
the load. Because, throughout the experiment, PC > P � the
controller supplies much more energy than is converted to
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Fig. 12. Energy balance - During the acceleration of the mass the energy
supplied by the controller is bigger than the energy converted to kinetic energy
of the load.

kinetic energy of the load. In fact, the difference HC −HL is
stored internally in the springs.

C. Design based on a Mechanical Decoupling

In other designs, such as the VS-Joint [9], the change of
the apparent output stiffness and the change of the output
joint position is completely mechanically decoupled. The
conceptual design of this kind of actuators is depicted in
Figure 13. The working principle is based on two identical
nonlinear quadratic springs, characterized by elastic constant
k. The linear motor M2 generates a linear displacement q2
and is used for changing the apparent output stiffness of the
actuator. The output position r is determined by the rotational
motor M1, which directly controls the degree of freedom q1.
Note that thus the end effector can rotate independently from
the pulley. Compared with the antagonistic design presented in
Section V-B, the degree of freedom q1 realizes the differential
mode of operation of the motors M1 and M2 in the antago-
nistic design, and the degree of freedom q2 the common mode
operation.

Figure 8.11: Power flow—The power supplied via the control port is used to accelerate the mass.
Initially, all the power is stored in C� and C⊥, i.e. PL = 0, due to the inertia of the load. When
P � > PL, power is flowing towards C� and stored, but later, when P � < PL, power is flowing
from C� to the load.

springs. By taking the total derivative of (8.19), we obtain

ṡ =

�
ṡ1
ṡ2

�
=

�
q̇2 +Rq̇1 −Rṙ
q̇2 −Rq̇1 +Rṙ

�
=:

�
fS1

fS2

�

From this, we identify the matrices A(q, r) and B(q, r), i.e.,

A(q, r) =

�
R 1
−R 1

�
, B(q, r) =

�
−R
R

�

with which the Dirac structure, as defined in (8.6), can be represented.
The matrix B(q, r) for this design is the same as for the previous design. Hence,

the image is exactly the same, and the same change of coordinates Sb is obtained.
We then have

�
ṡ�q

ṡ⊥q

�
= S−1

b A(q, r)q̇

=

�
2k(s1 + s2)

s1 + s2

�
−s1 s2√
s1s2

√
s1s2

� �
R 1
−R 1

� �
q̇1
q̇2

�

=

�
2k(s1 + s2)

s1 + s2

�
−Rq̇1(s1 + s2)− q̇2(s1 − s2)

2
√
s1s2q̇2

�

The forces eS = ∂H
∂s are the same as in the antagonistic design, and hence we can

compute µ according to (8.15)

µ =
P⊥
C

PC
=

�F⊥
S |ṡ⊥q �

�∂H∂s |ṡq�
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to the foliations Sr (indicated by the black lines), only a local minimum of
H(s) can be reached (indicated by the dashed line). The difference in energy
levels between the end points of the thick black curve, i.e., H2−H1, indicates
how much energy cannot be used to do work on the output.

the control input q̇ with its corresponding control energy,
it is possible to go from any configuration on S to any
other configuration. However, through the output port, the
configuration change is restricted to lie on the foliation Sr

that has been reached. Therefore, the minimum energy level,
that the system can reach, is in a local minimum of H(s).
This is illustrated via the solid black curve, which represents
a generic change of configuration of the actuator. It can be
seen that in general the energy, which has been supplied via
the control port, cannot be provided completely to the output
port. The actual amount of energy that is internally stored is
equal to the difference in energy levels at the end points of
the solid curve, i.e., H2 −H1.

Example: The simple structure of this type of actuator
allows to illustrate the theory with a straightforward simulation
experiment. We assume that a mass is attached to the output
and that, starting from a zero velocity, it should achieve a
constant ṙ, while the apparent output stiffness is changed
simultaneously with constant K̇. It follows that the control
input q̇ is also constant.

Figure 11 presents the power flow P � to the virtual storage
element C�, the power flow P⊥ to the virtual storage element
C⊥, the total power flow PC from the control port, and the
power flow PL to the load.

Initially, all power is stored as potential energy in C�

and C⊥, due to the inertia of the load, and, therefore, the
power flows P � and P⊥ increase. While P � > PL, the mass
accelerates and the power PC is diverted to C� and stored
as potential energy. When P � ≤ PL, this potential energy is
started to be released to the load. Note that P⊥ is always
increasing, which means that part of the control power PC is
captured by the internal springs and not used to accelerate the
mass.

Figure 12 presents the energy balance between the energy
HC supplied by the controller and the kinetic energy HL of
the load. Because, throughout the experiment, PC > P � the
controller supplies much more energy than is converted to

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Po
w
er
[W
]

time [s]

PC

PL

P �

P⊥
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to accelerate the mass. Initially, all the power is stored in C� and C⊥, i.e.
PL = 0, due to the inertia of the load. When P � > PL, power is flowing
towards C� and stored, but later, when P � < PL, power is flowing from C�
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Fig. 12. Energy balance - During the acceleration of the mass the energy
supplied by the controller is bigger than the energy converted to kinetic energy
of the load.

kinetic energy of the load. In fact, the difference HC −HL is
stored internally in the springs.

C. Design based on a Mechanical Decoupling

In other designs, such as the VS-Joint [9], the change of
the apparent output stiffness and the change of the output
joint position is completely mechanically decoupled. The
conceptual design of this kind of actuators is depicted in
Figure 13. The working principle is based on two identical
nonlinear quadratic springs, characterized by elastic constant
k. The linear motor M2 generates a linear displacement q2
and is used for changing the apparent output stiffness of the
actuator. The output position r is determined by the rotational
motor M1, which directly controls the degree of freedom q1.
Note that thus the end effector can rotate independently from
the pulley. Compared with the antagonistic design presented in
Section V-B, the degree of freedom q1 realizes the differential
mode of operation of the motors M1 and M2 in the antago-
nistic design, and the degree of freedom q2 the common mode
operation.

Figure 8.12: Energy balance—During the acceleration of the mass the energy supplied by the
controller is bigger than the energy converted to kinetic energy of the load.

Figure 8.14 presents a visualization of the power flow ratio, where q̇1 has been used
to achieve the indicated ṙ, and q̇2 to achieve K̇. The areas indicate that, for a
particular (ṙ, K̇), the value of µ will be in the corresponding area. Also for this
design, the actual value of µ depends on the load of the springs, i.e., (s1, s2), and it
is negatively affected by higher preloads. As in the previous design, it can be noted
that the power flow ratio increases when the stiffness change is faster. However,
because of the mechanical decoupling of the position and stiffness change, this
influence is bigger than in the previous design.

8.6 Conclusions

In this paper, we defined a power flow ratio for variable stiffness actuators, derived
by using a port-based modeling framework. The power flow ratio is computed in
dynamic conditions and determines how the working principle of the actuator al-
lows in transferring the power from the internal degrees of freedom to the output,
irrespectively of the dynamic behavior of the load. We showed in three differ-
ent principle designs that the power flow ratio is strictly related to the kinematic
properties of the actuator, i.e., to its topological structure.

It was observed that the pretension of the internal elastic elements has a negative
influence on the power flow ratio. This can be explained by observing the relation
between the output motion and the state of the internal springs. We have shown
that this effect becomes more prominent when the rate of change of the stiffness
increases.

From the power flow analysis, it can be concluded that for variable stiffness
actuators, realized by a variable transmission ratio between the output and the
internal springs, all the power supplied by the control port can be used to do work



97
10

r

α

q1

q2

k
k

M1

M2

R

Fig. 13. Variable stiffness actuator using an antagonistic spring configuration
and based on mechanical decoupling - In this design, the change of the
stiffness and the actuator output position r is decoupled. The linear motor
M2 generates a linear displacement q2 and is used for changing the apparent
output stiffness of the actuator. The output joint position r is determined by
the rotational motor M1.

In order to build the port-based model of this actuator
design, we analyze its kinematics, described by (7). We
observe that the states si > 0, with i = 1, 2, of the nonlinear
spring are given by

s =

�
s1
s2

�
=

�
q2 −Rα
q2 +Rα

�
(19)

where R is the radius of the pulley, α = −q1 + r + π
2 and

the restriction si > 0 is assumed to simplify the equations
involving the force generated by the quadratic springs. By
taking the total derivative of (19), we obtain

ṡ =

�
ṡ1
ṡ2

�
=

�
q̇2 +Rq̇1 −Rṙ
q̇2 −Rq̇1 +Rṙ

�
=:

�
fS1

fS2

�

From this, we identify the matrices A(q, r) and B(q, r), i.e.,

A(q, r) =

�
R 1
−R 1

�
, B(q, r) =

�
−R
R

�

with which the Dirac structure, as defined in (6), can be
represented.

The matrix B(q, r) for this design is the same as for the
previous design. Hence, the image is exactly the same, and
the same change of coordinates Sb is obtained. We then have
�
ṡ�q

ṡ⊥q

�
= S−1

b A(q, r)q̇

=

�
2k(s1 + s2)

s1 + s2

�
−s1 s2√
s1s2

√
s1s2

� �
R 1
−R 1

� �
q̇1
q̇2

�

=

�
2k(s1 + s2)

s1 + s2

�
−Rq̇1(s1 + s2)− q̇2(s1 − s2)

2
√
s1s2q̇2

�

The forces eS = ∂H
∂s are the same as in the antagonistic design,

and hence we can compute µ according to (15)

µ =
P⊥
C

PC
=

�F⊥
S |ṡ⊥q �

�∂H∂s |ṡq�
Figure 14 presents a visualization of the power flow ratio,
where q̇1 has been used to achieve the indicated ṙ, and q̇2
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Fig. 14. Power flow ratio µ for the design based on mechanical decoupling
- The rate of change of the configuration variable q̇ of the internal degrees
of freedom is chosen so to achieve the desired changes in output position
(ṙ) and stiffness (K̇). The indicated areas µ1, µ2, µ3 correspond to K̇ =
0.2 Nm/rad/s, K̇ = 0.6 Nm/rad/s and K̇ = 1.0 Nm/rad/s, respectively.

to achieve K̇. The areas indicate that, for a particular (ṙ, K̇),
the value of µ will be in the corresponding area. Also for
this design, the actual value of µ depends on the load of the
springs, i.e., (s1, s2), and it is negatively affected by higher
preloads. As in the previous design, it can be noted that
the power flow ratio increases when the stiffness change is
faster. However, because of the mechanical decoupling of the
position and stiffness change, this influence is bigger than in
the previous design.

VI. CONCLUSIONS

In this paper, we defined a power flow ratio for variable
stiffness actuators, derived by using a port-based modeling
framework. The power flow ratio is computed in dynamic
conditions and determines how the working principle of the
actuator allows in transferring the power from the internal
degrees of freedom to the output, irrespectively of the dynamic
behavior of the load. We showed in three different principle
designs that the power flow ratio is strictly related to the
kinematic properties of the actuator, i.e., to its topological
structure.

It was observed that the pretension of the internal elastic
elements has a negative influence on the power flow ratio.
This can be explained by observing the relation between the
output motion and the state of the internal springs. We have
shown that this effect becomes more prominent when the rate
of change of the stiffness increases.

From the power flow analysis, it can be concluded that for
variable stiffness actuators, realized by a variable transmission
ratio between the output and the internal springs, all the
power supplied by the control port can be used to do work
on the output without being captured by the internal elastic
elements. Therefore, this working principle allows a more
efficient distribution of the power flow from the control port.

The power flow analysis and the definition of the power
flow ratio, as presented in this work, give important insights
for the design of variable stiffness actuator and for the design
of control laws.

Figure 8.13: Variable stiffness actuator using an antagonistic spring configuration and based on
mechanical decoupling—In this design, the change of the stiffness and the actuator output position
r is decoupled. The linear motor M2 generates a linear displacement q2 and is used for changing
the apparent output stiffness of the actuator. The output joint position r is determined by the
rotational motor M1.

on the output without being captured by the internal elastic elements. Therefore,
this working principle allows a more efficient distribution of the power flow from
the control port.

The power flow analysis and the definition of the power flow ratio, as presented
in this work, give important insights for the design of variable stiffness actuator
and for the design of control laws.
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Fig. 13. Variable stiffness actuator using an antagonistic spring configuration
and based on mechanical decoupling - In this design, the change of the
stiffness and the actuator output position r is decoupled. The linear motor
M2 generates a linear displacement q2 and is used for changing the apparent
output stiffness of the actuator. The output joint position r is determined by
the rotational motor M1.

In order to build the port-based model of this actuator
design, we analyze its kinematics, described by (7). We
observe that the states si > 0, with i = 1, 2, of the nonlinear
spring are given by

s =

�
s1
s2

�
=

�
q2 −Rα
q2 +Rα

�
(19)

where R is the radius of the pulley, α = −q1 + r + π
2 and

the restriction si > 0 is assumed to simplify the equations
involving the force generated by the quadratic springs. By
taking the total derivative of (19), we obtain

ṡ =

�
ṡ1
ṡ2

�
=

�
q̇2 +Rq̇1 −Rṙ
q̇2 −Rq̇1 +Rṙ

�
=:
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fS1

fS2

�

From this, we identify the matrices A(q, r) and B(q, r), i.e.,

A(q, r) =

�
R 1
−R 1

�
, B(q, r) =

�
−R
R

�

with which the Dirac structure, as defined in (6), can be
represented.

The matrix B(q, r) for this design is the same as for the
previous design. Hence, the image is exactly the same, and
the same change of coordinates Sb is obtained. We then have
�
ṡ�q

ṡ⊥q

�
= S−1

b A(q, r)q̇

=
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The forces eS = ∂H
∂s are the same as in the antagonistic design,

and hence we can compute µ according to (15)

µ =
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=
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Figure 14 presents a visualization of the power flow ratio,
where q̇1 has been used to achieve the indicated ṙ, and q̇2
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Fig. 14. Power flow ratio µ for the design based on mechanical decoupling
- The rate of change of the configuration variable q̇ of the internal degrees
of freedom is chosen so to achieve the desired changes in output position
(ṙ) and stiffness (K̇). The indicated areas µ1, µ2, µ3 correspond to K̇ =
0.2 Nm/rad/s, K̇ = 0.6 Nm/rad/s and K̇ = 1.0 Nm/rad/s, respectively.

to achieve K̇. The areas indicate that, for a particular (ṙ, K̇),
the value of µ will be in the corresponding area. Also for
this design, the actual value of µ depends on the load of the
springs, i.e., (s1, s2), and it is negatively affected by higher
preloads. As in the previous design, it can be noted that
the power flow ratio increases when the stiffness change is
faster. However, because of the mechanical decoupling of the
position and stiffness change, this influence is bigger than in
the previous design.

VI. CONCLUSIONS

In this paper, we defined a power flow ratio for variable
stiffness actuators, derived by using a port-based modeling
framework. The power flow ratio is computed in dynamic
conditions and determines how the working principle of the
actuator allows in transferring the power from the internal
degrees of freedom to the output, irrespectively of the dynamic
behavior of the load. We showed in three different principle
designs that the power flow ratio is strictly related to the
kinematic properties of the actuator, i.e., to its topological
structure.

It was observed that the pretension of the internal elastic
elements has a negative influence on the power flow ratio.
This can be explained by observing the relation between the
output motion and the state of the internal springs. We have
shown that this effect becomes more prominent when the rate
of change of the stiffness increases.

From the power flow analysis, it can be concluded that for
variable stiffness actuators, realized by a variable transmission
ratio between the output and the internal springs, all the
power supplied by the control port can be used to do work
on the output without being captured by the internal elastic
elements. Therefore, this working principle allows a more
efficient distribution of the power flow from the control port.

The power flow analysis and the definition of the power
flow ratio, as presented in this work, give important insights
for the design of variable stiffness actuator and for the design
of control laws.

Figure 8.14: Power flow ratio µ for the design based on mechanical decoupling—The rate of change
of the configuration variable q̇ of the internal degrees of freedom is chosen so to achieve the desired
changes in output position (ṙ) and stiffness (K̇). The indicated areas µ1, µ2, µ3 correspond to
K̇ = 0.2 Nm/rad/s, K̇ = 0.6 Nm/rad/s and K̇ = 1.0 Nm/rad/s, respectively.
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9.1 Introduction

The research interests and efforts in variable stiffness actuators are increasing in
recent years due to their broad range of possible applications. The main charac-
teristic property of a variable stiffness actuator is that the output stiffness can be
varied independently from the output position, thanks to the presence of internal
actuated degrees of freedom and internal springs. This means that, if the joints of
a robot are actuated by means of this class of actuators, it is possible for the robot
to perform different tasks while appearing more or less compliant.

Recently, various designs of variable stiffness actuators have been introduced,
for example AMASC [33], VSA [54], VS-Joint [75] and MACCEPA [61]. All these
actuators use a number of internal springs with a fixed elastic constant, and the
output stiffness is varied by changing the configuration of some internal degrees of
freedom. In the context of safe interaction, the mechanical compliance is controlled
only if an unexpected collision occurs and it is used to reduce the impact force [13].

Besides using the internal springs of a variable stiffness actuator solely to intro-
duce a mechanical compliance to the joints for safety reasons [5], they can also be
exploited to achieve more energy efficient actuation by storing negative work [52]
or to change the natural frequencies of the system to match the periodicity of the
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motion [55]. In recent work, we presented a novel energy efficient variable stiffness
actuator, characterized by the property that the output position and output stiff-
ness are decoupled on a mechanical level [68]. This property allows the internal
springs to be used as buffers to temporarily store potential energy. For example,
when a disturbance occurs, the springs can store the disturbance energy, which
then can be reused to bring the robot back to the desired trajectory. In particu-
lar, this approach can have big advantages in trajectory tracking [40, 17]. In such
applications, the desired joint trajectories do not depend on time, and hence the
potential energy stored in the springs can be used efficiently. This approach can be
beneficial to walking robots, where energy efficiency is of paramount concern and
trajectory tracking controllers can improve the robustness [16].

Building on our previous work, in this paper we establish a formal, port-based
mathematical model for the analysis and the control of variable stiffness actuators.
The port-based framework not only provides valuable insights on energy flows
between the internal actuators, the springs and the robot, but it is also a solid
foundation for research on innovative control methods. With the aim of achieving
energy efficiency, we derive a control architecture that uses the potential energy
stored in the springs to actuate the robot, instead of supplying this energy by
controlling the internal degrees of freedom. We demonstrate the effectiveness of
the proposed controller for a one degree of freedom system, under influence of a
disturbance. In particular, if a disturbance occurs, the corresponding energy is
stored in the internal springs and used for actuation. The insights gained will form
a basis for future work, in which we aim to develop energy efficient coordinated
control methods for a robot with multiple degrees of freedom.

9.2 Port-based Modeling of Variable Stiffness Ac-
tuators

In this Section, we intend to briefly recall the port-based generalized model of
variable stiffness actuators, introduced in our previous work [68, 66], and to provide
a more solid mathematical foundation, which is the basis for both the present
paper and future research. The port-based framework gives valuable insights in the
power flows between the controller, the variable stiffness actuator and the actuated
system. Therefore, it realizes an appropriate tool for the analysis, modeling and
control of systems in which energy efficiency is the main concern.

Without loss of generality, we assume that a variable stiffness actuator has the
following properties:

• n ≥ 2 internal degrees of freedom, denoted by q ∈ Q, can be actuated;

• m ≥ 1 springs, either linear or nonlinear, are internally present;

• the apparent output stiffness K of the actuator depends on both the config-
uration of the internal degrees of freedom and of the internal springs.
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Since the aim of the model is to analyze the functional principle of a variable
stiffness actuator, rather than evaluating the mechanical design, internal friction
and inertias are neglected. The generic model of a variable stiffness actuator is
depicted in Figure 9.1, using a bond graph representation. Each bond represents a
power flow, defined positive in the direction of the half arrow and characterized by
two power conjugate variables, called efforts e and flows f . If F is the linear space
of admissible flows, then the dual space E := F∗ is the linear space of admissible
efforts. For e ∈ E and f ∈ F , the dual product �e|f� yields power. The Dirac
structure D defines the interconnection of the bonds and, thus, defines how power
flows from one bond to the others. The Dirac structure is power continuous, as
follows from its formal definition [58]:

D = {D ⊂ E × F | �e|f� = 0 ∀ (e, f) ∈ D}

The multidimensional C-type storage element represents the springs in the device.
Springs are characterized by the state s ∈ S, i.e. their elongation or compression,
and by the energy they store, described by the function H : S → R. The effort
es and flow fs are, respectively, the forces generated by the springs and the rate
of change of the states. The multidimensional control port is characterized by
power conjugate variables τ and q̇, i.e. the generalized forces that actuate the
internal degrees of freedom and the generalized rate of change of the configuration
variables. The output port is characterized by power conjugate variables F and ẋ,
i.e. the generalized output force and the generalized output velocity, and, since
it is assumed that the variable stiffness actuator is connected to a joint with one
degree of freedom, it is one-dimensional. Depending on the type of actuator, the
output force can be either a linear force or a torque and, correspondingly, the
output position x ∈ X can either be a linear displacement or an angle. Note that
the efforts τ and F do not depend on the flows q̇ and ẋ since a power continuous
transformation between forces and velocities, called gyration, does not regularly
exist in the mechanical domain.

The stiffness K at the output is given by

K =
δF

δx

where δF and δx denote infinitesimal changes.
Before entering into the details of the design of the energy based control law,

we further analyze this model and derive the formal mathematical structure that
gives more insight into the Dirac structure and its properties.

Following the arguments above, there exists a map

Γ(q,x) : Q× X → S

that defines how the configuration of the internal degrees of freedom q ∈ Q and
the output position x ∈ X determine the states s ∈ S of the springs. The tangent
map Γ(q,x)∗ : TQ × TX → TS and cotangent map Γ∗

(q,x) : T ∗S → T ∗Q × T ∗X
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2. PORT-BASED MODELING OF VARIABLE
STIFFNESS ACTUATORS

In this Section, we intend to briefly recall the port-
based generalized model of variable stiffness actuators,
introduced in our previous work (Visser, 2010a,b), and to
provide a more solid mathematical foundation, which is
the basis for both the present paper and future research.
The port-based framework gives valuable insights in the
power flows between the controller, the variable stiffness
actuator and the actuated system. Therefore, it realizes an
appropriate tool for the analysis, modeling and control of
systems in which energy efficiency is the main concern.

Without loss of generality, we assume that a variable
stiffness actuator has the following properties:

• n ≥ 2 internal degrees of freedom, denoted by q ∈ Q,
can be actuated;

• m ≥ 1 springs, either linear or nonlinear, are inter-
nally present;

• the apparent output stiffness K of the actuator de-
pends on both the configuration of the internal de-
grees of freedom and of the internal springs.

Since the aim of the model is to analyze the functional
principle of a variable stiffness actuator, rather than eval-
uating the mechanical design, internal friction and inertias
are neglected. The generic model of a variable stiffness
actuator is depicted in Figure 1, using a bond graph
representation. Each bond represents a power flow, defined
positive in the direction of the half arrow and characterized
by two power conjugate variables, called efforts e and flows
f . If F is the linear space of admissible flows, then the dual
space E := F∗ is the linear space of admissible efforts. For
e ∈ E and f ∈ F , the dual product �e|f� yields power.
The Dirac structure D defines the interconnection of the
bonds and, thus, defines how power flows from one bond
to the others. The Dirac structure is power continuous, as
follows from its formal definition (van der Schaft, 2000):

D = {D ⊂ E × F | �e|f� = 0 ∀ (e, f) ∈ D}
The multidimensional C-type storage element represents
the springs in the device. Springs are characterized by the
state s ∈ S, i.e. their elongation or compression, and by the
energy they store, described by the function H : S → R.
The effort es and flow fs are, respectively, the forces
generated by the springs and the rate of change of the
states. The multidimensional control port is characterized
by power conjugate variables τ and q̇, i.e. the generalized
forces that actuate the internal degrees of freedom and the
generalized rate of change of the configuration variables.
The output port is characterized by power conjugate vari-
ables F and ẋ, i.e. the generalized output force and the
generalized output velocity, and, since it is assumed that
the variable stiffness actuator is connected to a joint with
one degree of freedom, it is one-dimensional. Depending on
the type of actuator, the output force can be either a linear
force or a torque and, correspondingly, the output position
x ∈ X can either be a linear displacement or an angle. Note
that the efforts τ and F do not depend on the flows q̇ and
ẋ since a power continuous transformation between forces
and velocities, called gyration, does not regularly exist in
the mechanical domain.

The stiffness K at the output is given by

C D
es

fs

−τ q̇

−F

ẋ

Fig. 1. Generalized representation of a variable stiffness
actuator. The Dirac structure defines the intercon-
nection between the different bonds and, therefore,
how power is distributed among the ports. The multi-
bonds allow any number of springs, i.e. the C-element,
and any number of external inputs (τ, q̇). The output
port (F, ẋ) is one-dimensional and thus a single-bond.

K =
δF

δx
where δF and δx denote infinitesimal changes.

Before entering into the details of the design of the energy
based control law, we further analyze this model and derive
the formal mathematical structure that gives more insight
into the Dirac structure and its properties.

Following the arguments above, there exists a map

Γ(q,x) : Q× X → S
that defines how the configuration of the internal degrees
of freedom q ∈ Q and the output position x ∈ X determine
the states s ∈ S of the springs. The tangent map Γ(q,x)∗ :
TQ×TX → TS and cotangent map Γ∗

(q,x) : T
∗S → T ∗Q×

T ∗X are naturally defined (Nijmeijer and van der Schaft,
1990). The fiber bundle πu : Uq × Ux → Q× X has fibers
π−1
u (q, x) that denote the input spaces Uq × Ux. Given

an input (uq, ux) ∈ Uq × Ux, the internal configuration
q and the output position x are subject to the dynamics
G : Uq × Ux → TQ× TX given by

q̇ = uq, ẋ = ux (1)

Equation (1) can be written as

q̇ =
n�

i=1

vq,iuq,i, ẋ = vxux (2)

where
vq,i = ( 0 · · · 0� �� �

i−1 elements

1 0 · · · 0� �� �
n−1 elements

)T

vx = 1

(3)

define constant input vector fields on TQ × TX , i.e. the
canonical basis for the tangent space. Since these dynamics
are trivial, we allow abuse of notation and consider q̇ and
ẋ as inputs to the system. These relations are summarized
in the commutative diagram in Figure 2.

The dynamics of the variable stiffness actuator are

ṡ = Γ(q,x)∗ (q̇, ẋ)

(τ, F ) = Γ∗
(q,x) (dH)

(4)

where dH denotes the differential of the energy function
H . We can see that flows are elements of the tangent
spaces and efforts elements of the cotangent spaces. The
Dirac structure is in the tangent maps Γq∗ : TQ → TS,
Γx∗ : TX → TS and the corresponding cotangent maps
Γ∗
q , Γ

∗
x. Via these maps, the velocities on TsS at s ∈ S are

Figure 9.1: Generalized representation of a variable stiffness actuator—The Dirac structure defines
the interconnection between the different bonds and, therefore, how power is distributed among
the ports. The multi-bonds allow any number of springs, i.e. the C-element, and any number of
external inputs (τ, q̇). The output port (F, ẋ) is one-dimensional and thus a single-bond.

are naturally defined [42]. The fiber bundle πu : Uq × Ux → Q × X has fibers
π−1
u (q, x) that denote the input spaces Uq×Ux. Given an input (uq, ux) ∈ Uq×Ux,

the internal configuration q and the output position x are subject to the dynamics
G : Uq × Ux → TQ× TX given by

q̇ = uq, ẋ = ux (9.1)

Equation (9.1) can be written as

q̇ =
n�

i=1

vq,iuq,i, ẋ = vxux (9.2)

where

vq,i = ( 0 · · · 0� �� �
i−1 elements

1 0 · · · 0� �� �
n−i elements

)T

vx = 1

(9.3)

define constant input vector fields on TQ × TX , i.e. the canonical basis for the
tangent space. Since these dynamics are trivial, we allow abuse of notation and
consider q̇ and ẋ as inputs to the system. These relations are summarized in the
commutative diagram in Figure 9.2.

The dynamics of the variable stiffness actuator are

ṡ = Γ(q,x)∗ (q̇, ẋ)

(τ, F ) = Γ∗
(q,x) (dH)

(9.4)

where dH denotes the differential of the energy function H. We can see that flows
are elements of the tangent spaces and efforts elements of the cotangent spaces.
The Dirac structure is in the tangent maps Γq∗ : TQ → TS, Γx∗ : TX → TS
and the corresponding cotangent maps Γ∗

q , Γ
∗
x. Via these maps, the velocities on

TsS at s ∈ S are defined by the velocities on TqQ × TxX at (q, x) ∈ Q × X , and
correspondingly the forces on T ∗

q Q × T ∗
xX by the forces on T ∗

s S, such that power
continuity is preserved.
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S

TS

T ∗S

Q× X

TQ× TX

T ∗Q× T ∗X

Uq × Ux

Γ(q,x)

Γ(q,x)∗

Γ∗
(q,x)

G

πu

Fig. 2. Commutative diagram for a variable stiffness actu-
ator. Q is the configuration manifold of the internal
degrees of freedom, S of the state of the internal
springs, and X of the output position.

defined by the velocities on TqQ×TxX at (q, x) ∈ Q×X ,
and correspondingly the forces on T ∗

q Q×T ∗
xX by the forces

on T ∗
s S, such that power continuity is preserved.

The rate of change of the energy stored in the springs is
given by (Bullo and Lewis, 2004):

Ḣ = dH ṡ = dH Γ(q,x)∗(q̇, ẋ) (5)

From (4) and (5), it can be immediately observed how the
output force and the energy stored in the mechanism are
related to each other, and how the rate of change of the
stored energy depends on the output ports. In particular,
from (5) it follows that the energy stored in the springs
does not change due to the control input if

q̇ ∈ kerΓq∗ (6)

where kerΓq∗ denotes the kernel of the map Γq∗. Note
that the existence of this kernel depends on the mechanical
design of the variable stiffness actuator (Visser, 2010a).

3. ENERGY EFFICIENT CONTROL

In this Section, an energy efficient control law for variable
stiffness actuators is derived. This means that, in order to
achieve the energy efficiency of the controller, we intend
to use the energy stored in the internal springs, if present,
for the actuation of the robotic joint. First, we formulate
the problem statements and, then, derive a solution that
accomplishes the energy efficiency requirements. More-
over, since the fundamental demand of variable stiffness
actuators is the capability of changing the output stiffness,
we extend the control law with stiffness regulation.

3.1 Problem Statement

As depicted in Figure 1, the variable stiffness actuator is
connected to a robotic joint with one degree of freedom.
This connection is explicitly shown in Figure 3 by a 1-
junction representing the power continuous connection

ẋ = y, u = −F

where (u, y) is the interaction port of the joint. In partic-
ular, u denotes the input force (or torque) applied to the
joint, and y its velocity. We assume that full state measure-
ment is available, i.e. for both joint and variable stiffness
actuator all positions and velocities can be measured.

We now design an energetically efficient control architec-
ture for the variable stiffness actuator, by using both the
internal springs and internal actuated degrees of freedom,
so that the actuator is able to apply a desired force (or

C D
es

fs

−τ q̇

−F

ẋ
1

u

y
Joint

Fig. 3. Generalized representation of a variable stiffness
actuator interconnected with a robotic joint.

torque) ud to the joint and so that the output stiffness
is regulated at a desired value. These goals are formally
contained in the following problem statements.

Problem 3.1. Consider a variable stiffness actuator, de-
scribed by an energy function H and the dynamics (4),
connected to a robotic joint by a power continuous connec-
tion. Assume that full state measurement is available. How
can the control inputs q̇ to the variable stiffness actuator
be designed such that the desired joint input ud is achieved
in an energy efficient way?

Problem 3.2. How can the control inputs q̇ to the vari-
able stiffness actuator be designed such that a desired joint
input ud is achieved in an energy efficient way, while at
the same time the output stiffness is controlled?

In the solutions of these two problems, we aim to exploit
the internal springs of the variable stiffness actuator as
buffers for storing potential energy and to use this energy
to actuate the joint. In the remainder of the Section, we
first derive a control law that solves Problem 3.1 in a
nominal case, i.e., without considering energy efficiency.
Then, we focus on refining the control law by efficiently
using any potential energy stored in the springs to reduce
the energy supply via the control port. Finally, we derive
the stiffness control law for Problem 3.2.

3.2 Output Force Control

Before proceeding with the formulation of the control law,
it is necessary to highlight that, if a desired input force
(torque) ud is required at the robotic joint, also the desired
output force Fd of the actuator is known due to the power
continuous connection. Moreover, from (4), the output
force F , generated by the variable stiffness actuator, can be
determined once the current values for q and x are given.
This means that it is possible to find a control law gF (·)
such that the evolution in time of the force F is given by

Ḟ = gF (Fd, F )

as a function of the actual and the desired output force.
We can then formulate a nominal control law as follows.

Lemma 3.3. (Nominal control). Consider a variable stiff-
ness actuator described by an energy function H and the
dynamics (4), connected to the joint of a robot through
a power continuous connection. Let the vector valued
function V (q, x) be:

V (q, x) := (Lvq,1F, . . . , Lvq,nF ) (7)

where Lvq,iF denotes the Lie-derivative of F along the
vector field vq,i. Define a subset M of Q× X as:

M = {(q, x) ∈ Q× X | V (q, x) �= 0}

Figure 9.2: Commutative diagram for a variable stiffness actuator—Q is the configuration mani-
fold of the internal degrees of freedom, S of the state of the internal springs, and X of the output
position.

The rate of change of the energy stored in the springs is given by [7]:

Ḣ = dH ṡ = dH Γ(q,x)∗(q̇, ẋ) (9.5)

From (9.4) and (9.5), it can be immediately observed how the output force and
the energy stored in the mechanism are related to each other, and how the rate of
change of the stored energy depends on the output ports. In particular, from (9.5)
it follows that the energy stored in the springs does not change due to the control
input if

q̇ ∈ kerΓq∗ (9.6)

where kerΓq∗ denotes the kernel of the map Γq∗. Note that the existence of this
kernel depends on the mechanical design of the variable stiffness actuator [68].

9.3 Energy Efficient Control

In this Section, an energy efficient control law for variable stiffness actuators is de-
rived. This means that, in order to achieve the energy efficiency of the controller,
we intend to use the energy stored in the internal springs, if present, for the actu-
ation of the robotic joint. First, we formulate the problem statements and, then,
derive a solution that accomplishes the energy efficiency requirements. Moreover,
since the fundamental demand of variable stiffness actuators is the capability of
changing the output stiffness, we extend the control law with stiffness regulation.

9.3.1 Problem Statement

As depicted in Figure 9.1, the variable stiffness actuator is connected to a robotic
joint with one degree of freedom. This connection is explicitly shown in Figure 9.3
by a 1-junction representing the power continuous connection

ẋ = y, u = −F
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Q× X
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T ∗Q× T ∗X

Uq × Ux

Γ(q,x)

Γ(q,x)∗

Γ∗
(q,x)
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Fig. 2. Commutative diagram for a variable stiffness actu-
ator. Q is the configuration manifold of the internal
degrees of freedom, S of the state of the internal
springs, and X of the output position.

defined by the velocities on TqQ×TxX at (q, x) ∈ Q×X ,
and correspondingly the forces on T ∗

q Q×T ∗
xX by the forces

on T ∗
s S, such that power continuity is preserved.

The rate of change of the energy stored in the springs is
given by (Bullo and Lewis, 2004):

Ḣ = dH ṡ = dH Γ(q,x)∗(q̇, ẋ) (5)

From (4) and (5), it can be immediately observed how the
output force and the energy stored in the mechanism are
related to each other, and how the rate of change of the
stored energy depends on the output ports. In particular,
from (5) it follows that the energy stored in the springs
does not change due to the control input if

q̇ ∈ kerΓq∗ (6)

where kerΓq∗ denotes the kernel of the map Γq∗. Note
that the existence of this kernel depends on the mechanical
design of the variable stiffness actuator (Visser, 2010a).

3. ENERGY EFFICIENT CONTROL

In this Section, an energy efficient control law for variable
stiffness actuators is derived. This means that, in order to
achieve the energy efficiency of the controller, we intend
to use the energy stored in the internal springs, if present,
for the actuation of the robotic joint. First, we formulate
the problem statements and, then, derive a solution that
accomplishes the energy efficiency requirements. More-
over, since the fundamental demand of variable stiffness
actuators is the capability of changing the output stiffness,
we extend the control law with stiffness regulation.

3.1 Problem Statement

As depicted in Figure 1, the variable stiffness actuator is
connected to a robotic joint with one degree of freedom.
This connection is explicitly shown in Figure 3 by a 1-
junction representing the power continuous connection

ẋ = y, u = −F

where (u, y) is the interaction port of the joint. In partic-
ular, u denotes the input force (or torque) applied to the
joint, and y its velocity. We assume that full state measure-
ment is available, i.e. for both joint and variable stiffness
actuator all positions and velocities can be measured.

We now design an energetically efficient control architec-
ture for the variable stiffness actuator, by using both the
internal springs and internal actuated degrees of freedom,
so that the actuator is able to apply a desired force (or

C D
es

fs

−τ q̇

−F

ẋ
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Fig. 3. Generalized representation of a variable stiffness
actuator interconnected with a robotic joint.

torque) ud to the joint and so that the output stiffness
is regulated at a desired value. These goals are formally
contained in the following problem statements.

Problem 3.1. Consider a variable stiffness actuator, de-
scribed by an energy function H and the dynamics (4),
connected to a robotic joint by a power continuous connec-
tion. Assume that full state measurement is available. How
can the control inputs q̇ to the variable stiffness actuator
be designed such that the desired joint input ud is achieved
in an energy efficient way?

Problem 3.2. How can the control inputs q̇ to the vari-
able stiffness actuator be designed such that a desired joint
input ud is achieved in an energy efficient way, while at
the same time the output stiffness is controlled?

In the solutions of these two problems, we aim to exploit
the internal springs of the variable stiffness actuator as
buffers for storing potential energy and to use this energy
to actuate the joint. In the remainder of the Section, we
first derive a control law that solves Problem 3.1 in a
nominal case, i.e., without considering energy efficiency.
Then, we focus on refining the control law by efficiently
using any potential energy stored in the springs to reduce
the energy supply via the control port. Finally, we derive
the stiffness control law for Problem 3.2.

3.2 Output Force Control

Before proceeding with the formulation of the control law,
it is necessary to highlight that, if a desired input force
(torque) ud is required at the robotic joint, also the desired
output force Fd of the actuator is known due to the power
continuous connection. Moreover, from (4), the output
force F , generated by the variable stiffness actuator, can be
determined once the current values for q and x are given.
This means that it is possible to find a control law gF (·)
such that the evolution in time of the force F is given by

Ḟ = gF (Fd, F )

as a function of the actual and the desired output force.
We can then formulate a nominal control law as follows.

Lemma 3.3. (Nominal control). Consider a variable stiff-
ness actuator described by an energy function H and the
dynamics (4), connected to the joint of a robot through
a power continuous connection. Let the vector valued
function V (q, x) be:

V (q, x) := (Lvq,1F, . . . , Lvq,nF ) (7)

where Lvq,iF denotes the Lie-derivative of F along the
vector field vq,i. Define a subset M of Q× X as:

M = {(q, x) ∈ Q× X | V (q, x) �= 0}

Figure 9.3: Generalized representation of a variable stiffness actuator interconnected with a
robotic joint.

where (u, y) is the interaction port of the joint. In particular, u denotes the input
force (or torque) applied to the joint, and y its velocity. We assume that full
state measurement is available, i.e. for both joint and variable stiffness actuator
all positions and velocities can be measured.

We now design an energetically efficient control architecture for the variable
stiffness actuator, by using both the internal springs and internal actuated degrees
of freedom, so that the actuator is able to apply a desired force (or torque) ud to
the joint and so that the output stiffness is regulated at a desired value. These
goals are formally contained in the following problem statements.

Problem 9.1 Consider a variable stiffness actuator, described by an energy func-
tion H and the dynamics (9.4), connected to a robotic joint by a power continuous
connection. Assume that full state measurement is available. How can the control
inputs q̇ to the variable stiffness actuator be designed such that the desired joint
input ud is achieved in an energy efficient way?

Problem 9.2 How can the control inputs q̇ to the variable stiffness actuator be
designed such that a desired joint input ud is achieved in an energy efficient way,
while at the same time the output stiffness is controlled?

In the solutions of these two problems, we aim to exploit the internal springs
of the variable stiffness actuator as buffers for storing potential energy and to use
this energy to actuate the joint. In the remainder of the Section, we first derive
a control law that solves Problem 9.1 in a nominal case, i.e., without considering
energy efficiency. Then, we focus on refining the control law by efficiently using any
potential energy stored in the springs to reduce the energy supply via the control
port. Finally, we derive the stiffness control law for Problem 9.2.

9.3.2 Output Force Control

Before proceeding with the formulation of the control law, it is necessary to high-
light that, if a desired input force (torque) ud is required at the robotic joint, also
the desired output force Fd of the actuator is known due to the power continuous
connection. Moreover, from (9.4), the output force F , generated by the variable
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stiffness actuator, can be determined once the current values for q and x are given.
This means that it is possible to find a control law gF (·) such that the evolution in
time of the force F is given by

Ḟ = gF (Fd, F )

as a function of the actual and the desired output force. We can then formulate a
nominal control law as follows.

Lemma 9.1 (Nominal control) Consider a variable stiffness actuator described
by an energy function H and the dynamics (9.4), connected to the joint of a robot
through a power continuous connection. Let the vector valued function V (q, x) be:

V (q, x) := (Lvq,1F, . . . , Lvq,nF ) (9.7)

where Lvq,iF denotes the Lie-derivative of F along the vector field vq,i. Define a
subset M of Q× X as:

M = {(q, x) ∈ Q× X | V (q, x) �= 0}

By using the control law Ḟ = gF (Fd, F ), the nominal control input

q̇n = V +
�
Ḟ − (LvxF ) ẋ

�
(9.8)

where + denotes the Moore-Penrose pseudo inverse, solves Problem 9.1 for (q, x)
in M.

Proof: Since we defined the exact one-form dH on T ∗
s S, we have that (τ, F )

is an exact one-form on T ∗
q Q × T ∗

xX , defined by the map Γ∗
(q,x) [42]. Moreover,

since the input vector fields, as defined in (9.2) and (9.3) are constant, the rate of
change of the one-form (τ, F ) is given by

d

dt
(τ, F ) =

�
q̇1 · · · q̇n ẋ

�





Lvq,1(τ, F )
...

Lvq,n(τ, F )
Lvx(τ, F )




(9.9)

where we allowed some abuse of notation, as in (9.1). Since dim X = 1, from (9.9)
it follows that:

Ḟ = V q̇ + (LvxF ) ẋ (9.10)

with V given in (9.7). Finally, from (9.10), the nominal controller q̇n in (9.8)
follows.

Note that the restriction of the solution to M follows from the Moore-Penrose
pseudo inverse for the full row-rank matrix V [3]:

V + = V T
�
V V T

�−1

i.e., the pseudo inverse is only defined for (q, x) in M. �
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9.3.3 Energy Efficient Control

The solution derived in Lemma 9.1 is not energy efficient, since the energy stored
in the springs is not taken into account. If a disturbance is present on the output
port, we intend to direct the corresponding energy to the springs so to use them
as energy buffer. Since our goal is to obtain solutions that efficiently use energy
stored in the springs, if there is energy stored in the springs, there is, in general,
no need to supply more energy via the control port.

For a particular class of variable stiffness actuators, the solution (9.8) can be
modified such that any potential energy stored in the springs is efficiently used to
actuate the robot. This class of actuators has the property that output position
and output stiffness are decoupled on a mechanical level and, therefore, the kernel
in (9.6) exists. This means that the map Γq∗ is surjective onto TsS:

rank Γq∗ < n, ∀(q, x) ∈ Q× X

This property allows for a partitioning of the tangent space TqQ, i.e. the tangent
space to Q at q, as:

TqQ = kerΓq∗ ⊕D

where ⊕ is the direct sum and D is such that the tangent space TqQ is complete.
In particular, since TqQ is a R-vector space [7], we require D to be orthogonal
to kerΓq∗ in the Euclidean sense. If we denote by k the dimension of kerΓq∗, i.e.
dim kerTqQ = k, 1 ≤ k < n, and since dim TqQ = n, it follows that dim D = n−k.

From (9.6) it was observed that, if the control input q̇ ∈ kerΓq∗, then the energy
stored in the springs does not change due to the control input. Hence, the solutions
to Problem 9.1 given by (9.8) should be in kerΓq∗ or close to it when energy is
stored in the springs. This can be achieved by defining on TqQ an appropriate
metric that weights the solutions given by the Moore-Penrose pseudo inverse [3].
This argument is formalized in the following Lemma.

Lemma 9.2 (Energy efficient control) Consider a variable stiffness actuator
described by an energy function H and the dynamics (9.4) and connected to the
joint of a robot by a power continuous connection. Assume that the variable stiffness
actuator satisfies the property

dim kerΓq∗ = k, 1 ≤ k < n, ∀(q, x) ∈ Q× X

Take on TqQ two sets of local coordinates, orthogonal in the Euclidean sense, de-
noted by a1 = (a11, . . . , a

1
k) and a2 = (a21, . . . , a

2
n−k), satisfying

kerΓq∗ = span
�
a1
�

D = span
�
a2
� (9.11)

On TqQ, define a metric g, such that in the local coordinates (a1, a2) its components
[g] are given by

[g] =

�
Ik 0
0 α In−k

�
(9.12)
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Fig. 4. Decomposition of the energy efficient control law
q̇e in (13) into components in kerΓq∗ and in D.

output force. This requires that the additional stiffness
control q̇kV ∈ kerV , so to not affect the control q̇e in (13).

Under the assumption of full state measurement, the ap-
parent output stiffness K of the actuator may be esti-
mated. Given a desired output stiffness Kd, we can design
a control law gK(·) such that the desired rate of change of
the stiffness is given by

K̇ = gK(Kd,K)

If we model the stiffness K as a function on the configu-
ration manifold, i.e. K : Q × X → R, we can formulate a
control law for the stiffness as follows.

Lemma 3.5. (Stiffness control). Define on TqQ two sets
of coordinates, denoted by b1 and b2, satisfying:

kerV = span
�
b1
�

TqQ = span
�
b1, b2

�

Determine a solution q̇k that achieves the desired rate of
change of the stiffness, i.e. a solution satisfying�

Lvq,1K · · · Lvq,nK
�
q̇k = gK(Kd,K)

where Lvq,iK denotes the Lie-derivative of K along vq,i.
Denote by q̇kV the projection of q̇k onto b1. Then, the
solution to Problem 3.2 is given by the control input

q̇k = q̇e + q̇kV (14)

✸

Proof: The control input q̇k is chosen such that the
stiffness changes as desired, and by taking the projection
onto kerV , the stiffness is changed while Problem 3.1 is
still solved. ✷

Remark 3.6. By taking the projection onto kerV , it is
ensured that at all times Problem 3.1 is solved. However,
it follows that, in general, q̇kV �= q̇k, and thus that the
stiffness does not change exactly as desired, but as close
to desired as possible. �

Remark 3.7. Since q̇kV was not obtained with respect to
the metric g as defined in Lemma 3.4, the solution (14) is
not necessarily energy efficient. In particular, the choice of
gK(·) determines the component outside kerΓq∗. �

4. SIMULATION RESULTS

In this Section, we show the effectiveness of the control
law derived in Section 3. This will be done by using
a linear variable stiffness actuator design, presented in
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Fig. 5. Joint phase diagram - In a periodic motion, the
disturbance is similarly corrected by each control law.
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Fig. 6. Energy supplied via the control port - The energy
efficient control law clearly achieves a reduction in
supplied energy. However, when stiffness regulation is
added, some of the gain in efficiency is lost.

earlier work (Visser, 2010a), which satisfies the condition
stated in Lemma 3.4, to actuate a joint. The experiment is
as follows. The actuator moves a linear joint on a periodic
motion following a sinusoidal trajectory with an amplitude
of 10 cm at a frequency of 0.1 Hz. The force ud needed to
make the joint follow the trajectory is calculated using a
PD-control law using the current and desired position and
velocity. In the time interval 5 ≤ t ≤ 6 s, the joint is
subjected to a 2 N constant disturbance force. The same
experiment is performed with each of the three presented
control laws (8), (13), (14), and their performance is
compared. In particular, it is investigated how each of the
controllers handles the disturbance energy. The results are
presented in Figures 5-7.

Figure 5 shows the phase space trajectory of the joint.
It can be seen that the response to the disturbance is
similar for each of the controllers. Note that each controller
required approximately the same amount of time to return
to the desired trajectory. In Figure 6, the energy supplied
via the control port of the variable stiffness actuator is
plotted. In particular, the absolute power flow through the
control port is integrated, to make explicit that negative
work is lost. From the numerical values, it can be seen
that the energy efficient control law indeed achieves a sig-

Figure 9.4: Decomposition of the energy efficient control law q̇e in (9.13) into components in
kerΓq∗ and in D.

with Ik and In−k the identity matrix of dimension k and n − k respectively, and
α : S → R+ a positive definite function realizing a measure for the amount of
energy stored in the springs.

Then, for (q, x) in the subset M, the control input

q̇e = V �
�
Ḟ − (LvxF ) ẋ

�
(9.13)

where � denotes the Moore-Penrose pseudo inverse with respect to the metric g
defined in (9.12), solves Problem 9.1 in an energy efficient way by exploiting the
energy stored in the springs.

Proof: Using the partitioning (9.11), the solution (9.8) can be expressed into
components that are either in kerΓq∗ or outside, i.e. in D. Figure 9.4 depicts a

two dimensional example, in which
�

∂
∂q1

, ∂
∂q2

�
denotes the canonical basis for TqQ,

the one-dimensional spaces kerΓq∗ and D are spanned by the vectors a1 and a2,
respectively. By choosing the metric g as proposed in (9.12), the components of
the solution q̇e in D are weighted by α. In particular, since α is chosen such that it
is proportional to the energy stored in the springs, the component in D is smaller
when there is more energy available in the springs. Hence, from (9.5) it follows
that, when there is more energy available in the springs, less energy is supplied via
the control port. �

9.3.4 Stiffness Control

The control law derived in Lemma 9.2 achieves control of the joint position, but
does not control the apparent stiffness of the joint. However, in many applications
it is desired that the apparent joint stiffness attains some specific value. Therefore,
we extend the control law with stiffness control. In particular, because of the
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redundancy in the internal degrees of freedom, we can define a control input, to
add to any solution of Problem 9.1, so that the stiffness is controlled independently
from the generated output force. This requires that the additional stiffness control
q̇kV ∈ kerV , so to not affect the control q̇e in (9.13).

Under the assumption of full state measurement, the apparent output stiffness
K of the actuator may be estimated. Given a desired output stiffness Kd, we can
design a control law gK(·) such that the desired rate of change of the stiffness is
given by

K̇ = gK(Kd,K)

If we model the stiffness K as a function on the configuration manifold, i.e. K :
Q× X → R, we can formulate a control law for the stiffness as follows.

Lemma 9.3 (Stiffness control) Define on TqQ two sets of coordinates, denoted
by b1 and b2, satisfying:

kerV = span
�
b1
�

TqQ = span
�
b1, b2

�

Determine a solution q̇k that achieves the desired rate of change of the stiffness,
i.e. a solution satisfying

�
Lvq,1K · · · Lvq,nK

�
q̇k = gK(Kd,K)

where Lvq,iK denotes the Lie-derivative of K along vq,i. Denote by q̇kV the pro-
jection of q̇k onto b1. Then, the solution to Problem 9.2 is given by the control
input

q̇k = q̇e + q̇kV (9.14)

Proof: The control input q̇k is chosen such that the stiffness changes as
desired, and by taking the projection onto kerV , the stiffness is changed while
Problem 9.1 is still solved. �

Remark 9.1 By taking the projection onto kerV , it is ensured that at all times
Problem 9.1 is solved. However, it follows that, in general, q̇kV �= q̇k, and thus that
the stiffness does not change exactly as desired, but as close to desired as possible.
�

Remark 9.2 Since q̇kV was not obtained with respect to the metric g as defined in
Lemma 9.2, the solution (9.14) is not necessarily energy efficient. In particular, the
choice of gK(·) determines the component outside kerΓq∗. �

9.4 Simulation Results

In this Section, we show the effectiveness of the control law derived in Section 9.3.
This will be done by using a linear variable stiffness actuator design, presented in
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q̇e in (13) into components in kerΓq∗ and in D.

output force. This requires that the additional stiffness
control q̇kV ∈ kerV , so to not affect the control q̇e in (13).

Under the assumption of full state measurement, the ap-
parent output stiffness K of the actuator may be esti-
mated. Given a desired output stiffness Kd, we can design
a control law gK(·) such that the desired rate of change of
the stiffness is given by

K̇ = gK(Kd,K)

If we model the stiffness K as a function on the configu-
ration manifold, i.e. K : Q × X → R, we can formulate a
control law for the stiffness as follows.

Lemma 3.5. (Stiffness control). Define on TqQ two sets
of coordinates, denoted by b1 and b2, satisfying:

kerV = span
�
b1
�

TqQ = span
�
b1, b2

�

Determine a solution q̇k that achieves the desired rate of
change of the stiffness, i.e. a solution satisfying�

Lvq,1K · · · Lvq,nK
�
q̇k = gK(Kd,K)

where Lvq,iK denotes the Lie-derivative of K along vq,i.
Denote by q̇kV the projection of q̇k onto b1. Then, the
solution to Problem 3.2 is given by the control input

q̇k = q̇e + q̇kV (14)

✸

Proof: The control input q̇k is chosen such that the
stiffness changes as desired, and by taking the projection
onto kerV , the stiffness is changed while Problem 3.1 is
still solved. ✷

Remark 3.6. By taking the projection onto kerV , it is
ensured that at all times Problem 3.1 is solved. However,
it follows that, in general, q̇kV �= q̇k, and thus that the
stiffness does not change exactly as desired, but as close
to desired as possible. �

Remark 3.7. Since q̇kV was not obtained with respect to
the metric g as defined in Lemma 3.4, the solution (14) is
not necessarily energy efficient. In particular, the choice of
gK(·) determines the component outside kerΓq∗. �

4. SIMULATION RESULTS

In this Section, we show the effectiveness of the control
law derived in Section 3. This will be done by using
a linear variable stiffness actuator design, presented in
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Fig. 5. Joint phase diagram - In a periodic motion, the
disturbance is similarly corrected by each control law.
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Fig. 6. Energy supplied via the control port - The energy
efficient control law clearly achieves a reduction in
supplied energy. However, when stiffness regulation is
added, some of the gain in efficiency is lost.

earlier work (Visser, 2010a), which satisfies the condition
stated in Lemma 3.4, to actuate a joint. The experiment is
as follows. The actuator moves a linear joint on a periodic
motion following a sinusoidal trajectory with an amplitude
of 10 cm at a frequency of 0.1 Hz. The force ud needed to
make the joint follow the trajectory is calculated using a
PD-control law using the current and desired position and
velocity. In the time interval 5 ≤ t ≤ 6 s, the joint is
subjected to a 2 N constant disturbance force. The same
experiment is performed with each of the three presented
control laws (8), (13), (14), and their performance is
compared. In particular, it is investigated how each of the
controllers handles the disturbance energy. The results are
presented in Figures 5-7.

Figure 5 shows the phase space trajectory of the joint.
It can be seen that the response to the disturbance is
similar for each of the controllers. Note that each controller
required approximately the same amount of time to return
to the desired trajectory. In Figure 6, the energy supplied
via the control port of the variable stiffness actuator is
plotted. In particular, the absolute power flow through the
control port is integrated, to make explicit that negative
work is lost. From the numerical values, it can be seen
that the energy efficient control law indeed achieves a sig-

Figure 9.5: Joint phase diagram—In a periodic motion, the disturbance is similarly corrected by
each control law.

earlier work [68], which satisfies the condition stated in Lemma 9.2, to actuate a
joint. The experiment is as follows. The actuator moves a linear joint on a periodic
motion following a sinusoidal trajectory with an amplitude of 10 cm at a frequency
of 0.1 Hz. The force ud needed to make the joint follow the trajectory is calculated
using a PD-control law using the current and desired position and velocity. In the
time interval 5 ≤ t ≤ 6 s, the joint is subjected to a 2 N constant disturbance
force. The same experiment is performed with each of the three presented control
laws (9.8), (9.13), (9.14), and their performance is compared. In particular, it is
investigated how each of the controllers handles the disturbance energy. The results
are presented in Figures 9.5-9.7.

Figure 9.5 shows the phase space trajectory of the joint. It can be seen that the
response to the disturbance is similar for each of the controllers. Note that each
controller required approximately the same amount of time to return to the desired
trajectory. In Figure 9.6, the energy supplied via the control port of the variable
stiffness actuator is plotted. In particular, the absolute power flow through the
control port is integrated, to make explicit that negative work is lost. From the
numerical values, it can be seen that the energy efficient control law indeed achieves
a significant reduction in energy consumption (approximately 9.6% with respect to
the nominal control law). When stiffness regulation is added, the reduction in en-
ergy consumption is less (approximately 2.6%), as was expected. From Figure 9.7,
the added benefit of stiffness regulation can be seen. Initially, the output stiffness
is kept to a desired value of 200 N/m. When the disturbance occurs, the output
stiffness increases, because the internal springs store the disturbance energy. The
increase in stiffness might be an undesiderable side effect in some applications,
e.g. in human-robot interaction, and thus the potential benefit of adding stiffness
regulation is illustrated. However, at the same time, it is illustrated that energy
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q̇e in (13) into components in kerΓq∗ and in D.

output force. This requires that the additional stiffness
control q̇kV ∈ kerV , so to not affect the control q̇e in (13).

Under the assumption of full state measurement, the ap-
parent output stiffness K of the actuator may be esti-
mated. Given a desired output stiffness Kd, we can design
a control law gK(·) such that the desired rate of change of
the stiffness is given by

K̇ = gK(Kd,K)

If we model the stiffness K as a function on the configu-
ration manifold, i.e. K : Q × X → R, we can formulate a
control law for the stiffness as follows.

Lemma 3.5. (Stiffness control). Define on TqQ two sets
of coordinates, denoted by b1 and b2, satisfying:

kerV = span
�
b1
�

TqQ = span
�
b1, b2

�

Determine a solution q̇k that achieves the desired rate of
change of the stiffness, i.e. a solution satisfying�

Lvq,1K · · · Lvq,nK
�
q̇k = gK(Kd,K)

where Lvq,iK denotes the Lie-derivative of K along vq,i.
Denote by q̇kV the projection of q̇k onto b1. Then, the
solution to Problem 3.2 is given by the control input

q̇k = q̇e + q̇kV (14)

✸

Proof: The control input q̇k is chosen such that the
stiffness changes as desired, and by taking the projection
onto kerV , the stiffness is changed while Problem 3.1 is
still solved. ✷

Remark 3.6. By taking the projection onto kerV , it is
ensured that at all times Problem 3.1 is solved. However,
it follows that, in general, q̇kV �= q̇k, and thus that the
stiffness does not change exactly as desired, but as close
to desired as possible. �

Remark 3.7. Since q̇kV was not obtained with respect to
the metric g as defined in Lemma 3.4, the solution (14) is
not necessarily energy efficient. In particular, the choice of
gK(·) determines the component outside kerΓq∗. �

4. SIMULATION RESULTS

In this Section, we show the effectiveness of the control
law derived in Section 3. This will be done by using
a linear variable stiffness actuator design, presented in
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Fig. 5. Joint phase diagram - In a periodic motion, the
disturbance is similarly corrected by each control law.
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Fig. 6. Energy supplied via the control port - The energy
efficient control law clearly achieves a reduction in
supplied energy. However, when stiffness regulation is
added, some of the gain in efficiency is lost.

earlier work (Visser, 2010a), which satisfies the condition
stated in Lemma 3.4, to actuate a joint. The experiment is
as follows. The actuator moves a linear joint on a periodic
motion following a sinusoidal trajectory with an amplitude
of 10 cm at a frequency of 0.1 Hz. The force ud needed to
make the joint follow the trajectory is calculated using a
PD-control law using the current and desired position and
velocity. In the time interval 5 ≤ t ≤ 6 s, the joint is
subjected to a 2 N constant disturbance force. The same
experiment is performed with each of the three presented
control laws (8), (13), (14), and their performance is
compared. In particular, it is investigated how each of the
controllers handles the disturbance energy. The results are
presented in Figures 5-7.

Figure 5 shows the phase space trajectory of the joint.
It can be seen that the response to the disturbance is
similar for each of the controllers. Note that each controller
required approximately the same amount of time to return
to the desired trajectory. In Figure 6, the energy supplied
via the control port of the variable stiffness actuator is
plotted. In particular, the absolute power flow through the
control port is integrated, to make explicit that negative
work is lost. From the numerical values, it can be seen
that the energy efficient control law indeed achieves a sig-

Figure 9.6: Energy supplied via the control port—The energy efficient control law clearly achieves
a reduction in supplied energy. However, when stiffness regulation is added, some of the gain in
efficiency is lost.

efficient control and regulating stiffness are contradicting goals.

9.5 Conclusions and Future Work

In this work, we presented an energy efficient control method for variable stiffness
actuators. In addition, a stiffness regulation control was implemented, with the
aim of maintaining a desired output stiffness. Simulation results illustrate the
effectiveness of the proposed method. In particular, it was shown that the energy
efficient control law indeed achieves a significant reduction in the energy supplied
via the control port of the variable stiffness actuator by reusing energy stored in the
springs. Adding stiffness regulation reduces the energy efficiency, but the controller
still performs better than the nominal controller. It was found that the strict time
dependency of the reference trajectory in the simulation can sometimes cause the
controllers to perform poorly. This is due to the inherent oscillatory behaviour of
the springs. We believe that, in limit cycle trajectory tracking applications, the
advantages of the proposed control strategy will become more apparent. Since in
such trajectory tracking application time is no longer restrictive, the controller may
perform better by taking a state dependent response to the disturbance.

Future work will focus on controlling multiple degree of freedom systems under
influence of significant disturbances, where the energy storing capabilities of the
springs are more useful. The aim is to control the joints in a coordinated way, and
come to an energy efficient disturbance correction. In particular, in the control of
walking robots, the energy losses, associated with the impacts of the feet, can be
reduced using our proposed control method.
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Fig. 7. Output stiffness - Adding stiffness regulation to
the control law ensures that the stiffness of the joint
is kept close to a desired value of 200 N/m.

nificant reduction in energy consumption (approximately
9.6% with respect to the nominal control law). When
stiffness regulation is added, the reduction in energy con-
sumption is less (approximately 2.6%), as was expected.
From Figure 7, the added benefit of stiffness regulation can
be seen. Initially, the output stiffness is kept to a desired
value of 200 N/m. When the disturbance occurs, the out-
put stiffness increases, because the internal springs store
the disturbance energy. The increase in stiffness might be
an undesiderable side effect in some applications, e.g. in
human-robot interaction, and thus the potential benefit of
adding stiffness regulation is illustrated. However, at the
same time, it is illustrated that energy efficient control and
regulating stiffness are contradicting goals.

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented an energy efficient control
method for variable stiffness actuators. In addition, a stiff-
ness regulation control was implemented, with the aim of
maintaining a desired output stiffness. Simulation results
illustrate the effectiveness of the proposed method. In
particular, it was shown that the energy efficient control
law indeed achieves a significant reduction in the energy
supplied via the control port of the variable stiffness ac-
tuator by reusing energy stored in the springs. Adding
stiffness regulation reduces the energy efficiency, but the
controller still performs better than the nominal controller.
It was found that the strict time dependency of the refer-
ence trajectory in the simulation can sometimes cause the
controllers to perform poorly. This is due to the inherent
oscillatory behaviour of the springs. We believe that, in
limit cycle trajectory tracking applications, the advantages
of the proposed control strategy will become more appar-
ent. Since in such trajectory tracking application time is
no longer restrictive, the controller may perform better by
taking a state dependent response to the disturbance.

Future work will focus on controlling multiple degree
of freedom systems under influence of significant distur-
bances, where the energy storing capabilities of the springs
are more useful. The aim is to control the joints in a coor-
dinated way, and come to an energy efficient disturbance
correction. In particular, in the control of walking robots,

the energy losses, associated with the impacts of the feet,
can be reduced using our proposed control method.
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10.1 Introduction

Variable stiffness actuators are capable of changing the apparent output stiffness
independently from the output position. This is achieved by introducing one or
more internal elastic elements to the actuator, and a number of actuated internal
degrees of freedom that determine how the elastic elements are sensed at the out-
put. In this way, a mechanical compliance with variable stiffness is introduced,
that decouples the actuated joint from the actuator itself [5]. In many emerging
robotic applications, such as walking robots, service and rehabilitation robotics,
and prostheses and orthoses, physical human-robot and robot-environment inter-
action is an integral part, and in these cases the introduction of the mechanical
compliance guarantees an intrinsic level of safety and stability. It can be seen as a
mechanical implementation of impedance control [31].

In robotic applications where the motions are mostly periodic, the introduction
of a mechanical compliance allows a temporary storage of energy when negative
work is done by the actuator [52, 51]. By observing that the added mechanical
compliance introduces an oscillatory, passive behavior to the system, it was shown
by [55] that by tuning the stiffness properly to the desired motion, more energy
efficient actuation of periodic motions can be achieved. The optimal stiffness was
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assumed to be constant, so that any costs related to changing this stiffness only
become relevant when the desired motion is changed.

In this work, we show that the behavior of a variable stiffness actuator can
be accurately described by the behavior of a spring with variable stiffness and
equilibrium position. A cost is associated to changing the equilibrium position and
the stiffness, both in terms of the deviation from the initial position and the rate of
change. Then, by allowing both the equilibrium position and the stiffness to change
dynamically, the desired output motion of the actuator output can be achieved
optimally with respect to this cost. The cost provides a measure of embodiment
of desired behavior in the passive dynamics of the variable stiffness actuator: if
the deviations from the initial conditions are minimal, then the passive dynamics
that the system would show when the equilibrium position and stiffness are not
changed, already approaches the desired behavior as close as possible. The optimal
initial conditions can be found that minimize the cost criterion.

The paper is organized as follows. Section 10.2 describes the generalized be-
havior of variable stiffness actuators, with the aim of rendering our approach in-
dependent from specific actuator designs. Then, in Section 10.3, the problem is
formally stated and explained in detail. In Section 10.4, a nominal solution to
the problem is provided, which is then optimized according to the cost criterion
in Section 10.5. The effectiveness of our approach is illustrated by algebraic and
simulation examples in Section 10.6. Concluding remarks and an outline for future
work is given in Section 10.7.

10.2 Generalized Behavior of Variable Stiffness
Actuators

In this Section, we present a port-Hamiltonian model for variable stiffness actua-
tors. This model is an extension of the model presented by [68]. Furthermore, we
propose a change of coordinates to capture the behavior of the variable stiffness
actuator, irrespective of the particular actuator design.

10.2.1 Generic Port-Hamiltonian Model of Variable Stiffness
Actuators

A generic port-based model for variable stiffness actuators was introduced by [68],
in which it was assumed that:

• the variable stiffness actuator has a number of internal elastic elements, de-
scribed by a state s and an energy function Hs(s) describing the storage of
elastic energy;

• there are a number of actuated internal degrees of freedom, with configuration
variables q;
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• the behavior at the actuator output, with one degree of freedom, is deter-
mined by the intrinsic properties of the elastic elements and the configuration
of the internal degrees of freedom.

Moreover, since the model aims to capture the working principle of the variable
stiffness actuator, internal inertias and friction were not incorporated in the model.
Under these assumptions, it was shown that the actuator behavior can be accurately
described in a port-based setting by:




ṡ
τq
τr



 =




0 A(q, r) B(q, r)

−AT (q, r) 0 0
−BT (q, r) 0 0





� �� �
D0(q,r)




∂Hs
∂s
q̇
ṙ



 (10.1)

where the skew-symmetric matrix D0(q, r) describes the power continuous port
interconnection. In particular, a storage port, an output port and a control port can
be identified. The storage port is described by the power conjugate pair (ṡ, ∂Hs

∂s ),

where ṡ denotes the rate of change of the state s of the elastic elements and ∂Hs
∂s

denotes the force generated by these elements. The output port is described by the
pair (ṙ, τr), with ṙ the rate of change of the output position r, and τr the collocated
force. The pair (q̇, τq) describes the control port, where q̇ denotes the rate of change
of the configuration variables q, and τq are the generalized collocated forces. The
matrices A(q, r) and B(q, r) are the algebraic Jacobians of the kinematic relation
λ : (q, r) �→ s, that relates the actuator output position r and the configuration q
of the internal degrees of freedom to the state s of the internal elastic elements. In
particular:

A(q, r) :=
∂λ

∂q
, B(q, r) :=

∂λ

∂r

The description (10.1) assumes ideal internal actuators, and thus velocity con-
trol of q̇. In practice however, the internal actuators have an inertia, and the torque
required to achieve a certain desired q̇ follows from the formulation of an appropri-
ate control law. Extending (10.1) to include these internal inertias is straightfor-
ward. Letting M = diag(m1, . . . ,mn) denote the constant inertia matrix, we then
obtain the following Hamiltonian energy function:

H(ρ, s) =
1

2
ρTM−1ρ+Hs(s) (10.2)

where ρ = Mq̇ denotes the momenta of the internal degrees of freedom. It can be
shown that (10.1) can then be expanded as:





ṡ
ρ̇
q̇
τr



 =





0 A(q, r) 0 B(q, r)
−AT (q, r) 0 −1 0

0 1 0 0
−BT (q, r) 0 0 0





� �� �
D(q,r)





∂H
∂s
∂H
∂ρ

τ

ṙ




(10.3)
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Where D(q, r) is a skew-symmetric matrix representing the extended Dirac struc-
ture. The power conjugate pair (q̇, τ) defines the new control port.

10.2.2 Change of Coordinates

The behavior of a variable stiffness actuator, seen at the output, is essentially the
behavior of a linear spring, of which the equilibrium position and the stiffness can
be changed [43]. We propose a change of coordinates

S : q �→ q̃, q̃ := (r̄, k) (10.4)

where r̄ denotes the equilibrium output position, and k the apparent output stiff-
ness, defined hereafter, to capture the behavior of the variable stiffness actuator in
terms of these quantities.

The equilibrium position r̄ of the actuator output is, by definition, the position r
for which ṙ = 0 and remains zero, i.e., the position r for which the potential (elastic)
energy function attains a minimum. Given a configuration q of the internal degrees
of freedom, and q̇ = 0, we thus have

r̄ = argmin
r

H(ρ, q, r)

= argmin
r

(Hs ◦ λ)(q, r)
(10.5)

where the second equality follows from q and r being stationary and from the
Hamiltonian energy function being quadratic in the momentum variables. The
apparent output stiffness follows from the definition of the stiffness:

k :=
δτr
δr

(10.6)

i.e., the infinitesimal force generated by an infinitesimal change in output position.
Note that the stiffness is a local property, thus (10.6) is only valid for stationary
configurations q̇ = 0 and ṙ = 0. From (10.3) and the kinematic relation λ, the force
at the output is τr = ∂

∂rHs(s ◦ λ), and thus we obtain that the apparent output
stiffness is given by:

k = −∂2H

∂r2
(q, r)

= −∂2(Hs ◦ λ)
∂r2

(q, r)

(10.7)

where the second equality again follows from q and r being stationary. Observe
that both r̄ and k are not functions of r, as they are only defined for a particular
value of r.

Using (10.5) and (10.7), the change of coordinates S is obtained, and it follows
that, for a given configuration (q, r),

˙̃q =
∂S

∂q
q̇ (10.8)
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Assumption 10.1 The change of coordinates (10.8) is a diffeomorphism and in-
dependent of q. •

Commonly encountered variable stiffness actuator designs, for example the an-
tagonistic design that is the basis of the VSA-I presented by [54], or the design of
the VS-Joint by [75], satisfy this assumption. Under this assumption, the dynamics
(10.3) can be rewritten in the new coordinates by transforming the momenta ρ into
the new coordinates, denoted by ρ̃. Correspondingly, the new inertia matrix M̃ is
obtained as

M̃ =
�

∂S
∂q

�−T
M

�
∂S
∂q

�−1
(10.9)

Then, in the new coordinates, the Hamiltonian energy function becomes

H̃(ρ̃, q̃, r) =
1

2
ρ̃T M̃−1ρ̃+ (Hs ◦ λ)(S−1(q̃), r)

The dynamic equations in port-Hamiltonian form readily follow, with a new control
port (τ̃ , ˙̃q).

For notational convenience, we introduce the following variables for the remain-
der of this paper:

x =





x1

x2

x3

x4



 :=





r
ṙ
r̄
k





Proposition 10.1 Due to the change of coordinates (10.4), the behavior of the
variable stiffness actuator can be described in the form

ẋ1 = x2

ẋ2 = 1
mx4(x3 − x1)

ẋ3 = u1

ẋ4 = u2

or:

ẋ = f(x) + g1 u1 + g2 u2

(10.10)

where x ∈ M denotes the state as element of the state manifold M, f(x) is the
drift vector field, and g1 and g2 are the constant control input vector fields.

Remark 10.1 We note that, since x4 corresponds to a stiffness, which is a positive
definite quantity, the state manifold M has a border. Therefore, any solution
that is obtained in what follows is only valid if it remains in the bounded set
{x ∈ M | x4 > 0}. �
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10.3 Problem Formulation

The goal of this work is to embed desired behavior into the variable stiffness actua-
tor as much as possible. Consequently, the desired behavior should be represented
in the form of a dynamical system, so that it is meaningful to let the autonomous
part of (10.10) approach the desired behavior.

Assumption 10.2 The desired periodic motion of the actuator can be described
in the phase space (x1, x2) by a dynamical system of the form:

ẋ1 = x2

ẋ2 = a(x1)− γ
(10.11)

implying that the desired motion x1(t) is bounded and at least twice continuously
differentiable. •

Assumption 10.3 Because (10.10) describes a physical system, the desired mo-
tion is such that it can be achieved with finite inputs u. •

Remark 10.2 Note that we do not allow a(·) to be a function of x2, as this would
imply damping, which will not result in a periodic motion. Only if this damping is
nonlinear and satisfies certain properties, such a description can result in periodic
behavior. For example, the solutions to Liénard systems are, when certain condi-
tions are met, limit cycles in the phase space [53]. This topic is considered beyond
the scope of this paper. �

By combining (10.10) and (10.11), we can define a function Γ(x):

Γ(x) = 1
mx4(x3 − x1)− a(x1) (10.12)

i.e., Γ(x) defines which output force must be generated to follow a desired trajec-
tory. It follows that Γ(x) defines foliations Nγ ⊂ M described by

Nγ = {x ∈ M | Γ(x) = γ}

The goal of this work is to find an input u, such that the system remains on
the foliation for a given desired motion (10.11), with minimum effort, i.e., with
the smallest control input and minimal deviations of x3 and x4 from the initial
conditions. This can be formally stated as follows.

Problem 10.1 Given a desired motion of the actuator output, described by
(10.11), find initial conditions x◦ = x(0), x◦ ∈ Nγ , and a control input u, such
that the criterion

J =

� ∞

0

1

2
�x◦

3 − x3�2r̄ +
1

2
�x◦

4 − x4�2k +
1

2
�u�2u dt (10.13)

is minimized for given weighted 2-norms � · �∗.
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The integrand of (10.13) can be interpreted as a Hamiltonian energy function.
Thus, minimizing J corresponds to finding the optimal trajectories x3(t) and x4(t)
with respect to this energy function. Note that there are two parts in the integrand,
and optimizing J means finding a trade-off between those two parts: the first two
terms associate a cost to the deviation from the initial conditions, and the last
term associates a cost to the rate of change of x3 and x4. In particular, the first
two terms in fact formulate a measure of embodiment of the desired behavior into
the variable stiffness actuator: if the deviations from the initial conditions of x3

and x4 are small, it means that the initial values for x3 and x4 result in an intrinsic
passive behavior that is already close to the desired behavior.

Remark 10.3 It will be shown that there is a cost associated to u that naturally
arises from physical considerations. However, there is no such physical cost for the
deviations of x3 and x4. These costs are associated with changing the equilibrium
position and the stiffness, and may be defined by the design of the actuator, by an
analysis of desired disturbance rejection, or some other analysis. �

10.4 Nominal Solution

The first step in solving Problem 10.1 is showing that there exists at least one
solution to the problem. The approach will be in two parts: first we establish that
there exists an input u such that the system (10.10) exhibits the desired motion
(10.11) in the plane (x1, x2), and then we will infer that the obtained solution
curves allow a minimization of the criterion (10.13).

10.4.1 Nominal Control Input

Given the desired motion (10.11) and the corresponding Γ(x) as defined in (10.12),
we extend the system description (10.10) by defining an output function h(x) =
Γ(x)− γ. Then, given initial conditions x◦ ∈ h−1(0), it is possible to compute the
maximal controlled invariant output-nulling submanifold. In particular, following
the algorithm presented by [42], we obtain the following.

First, we define the submanifold Z1 ⊂ Nγ ⊂ M by

Z1 = {x ∈ M | h(x) = 0}

This submanifold is of dimension three, because the restriction of the output func-
tion being zero defines a curve of dimension one. With x◦ ∈ Z1, the system
dynamics remain in Z1 for all time, if ḣ(x) = 0 for all time. We calculate

d

dt
h(x) = Lfh(x) + Lg1h(x)u1 + Lg2h(x)u2

= LfΓ(x) +
�
Lg1Γ(x) , Lg2Γ(x)

� �u1

u2

�
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with

LfΓ(x) =

�
− 1

m
x4 −

∂a

∂x1

�
x2

i.e., the Lie-derivative of Γ(x) along the drift vector field f(x), and similarly the
Lie-derivatives of Γ(x) along the control input vector fields:

�
Lg1Γ(x) , Lg2Γ(x)

�
=

�
1
mx4 , 1

m (x3 − x1)
�
=: A(x)

Since, as remarked before, x4 is always nonzero, A(x) nonsingular for all x, and
thus there always exists an input u, such that A(x)u + LfΓ(x) = 0. Define the
submanifold Z2 ⊂ Z1 by

Z2 = {x ∈ Z1 | ḣ(x) = 0}

This submanifold is of dimension two, due to the added restriction of ḣ(x) = 0.
We can take for u a combination of a state feedback and a new input v:

u = −AR(x)LfΓ(x) +A⊥(x)v (10.14)

where AR denotes a right inverse of A, and A⊥ is the annihilator for A. Then, for
initial conditions x◦ ∈ Z2, the input (10.14) ensures that the system remains in Z2,
and thus Z2 =: Z∗ is the maximal controlled invariant output-nulling submanifold.
Or, in other words, any trajectory x(t) that is a solution to (10.10), subject to
the input (10.14), will show the desired motion (10.11) in the plane (x1, x2) if the
initial conditions x◦ ∈ Z∗.

Remark 10.4 Because A(x) is not full rank, (10.14) defines infinitely many solu-
tions. It is well known that the weighted pseudo inverse is a right inverse that gives
a solution of minimum norm with respect to a metric [3]. Therefore, in the context
of optimizing (10.13), in (10.14) the pseudo inverse should be taken with respect
to the metric defining the norm � · �u, and v ≡ 0.

Inspection of the third row of (10.3) reveals that, at the port (q̇, τ), the infinites-
imal change δq̇ as a result of an infinitesimal change of applied control torque δτ
is, using the energy function (10.2), given by:

δq̇

δτ
=

∂2H

∂ρ2
= M−1

Hence, the metric defined by M is a useful metric to measure a change of q̇. Since
the input u = ˙̃q is defined in the new coordinates q̃, a meaningful choice for the
metric inducing the norm � · �u is the pseudo mass matrix M̃ defined in (10.9).
Using the definition of the norm, we obtain

1

2
�u�2

M̃
=

1

2
uT M̃u

which has indeed the units of energy, as we observed in defining the integrand of
(10.13). �
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10.4.2 Bounded Solutions

Optimization of the criterion (10.13) is only meaningful if the solutions x3(t) and
x4(t) remain in some bounded neighborhood of the initial conditions (x◦

3, x
◦
4). It

is tempting to assume, since the motion in the plane (x1, x2) is periodic, that also
the solutions (x3, x4) are periodic. However, this assumption may not be valid,
since the solution x(t) can be chaotic while still the projection onto (x1, x2) gives
the desired periodic motion. However, by investigation of (10.14), we can deduce
some properties of the solution x(t) of the system (10.10), (10.14).

The desired motion is described in (10.11) by a dynamic system without damp-
ing, and thus of the form ẍ1 = a(x1) − γ. For v ≡ 0, (10.14) is differentiable,
because A(x) is nonsingular (see Remark 10.1) and bounded by Assumption 10.3.
Defining z := (x1, x3, x4), it follows that on a closed and finite time interval, ż is
bounded and C1, and that z̈ is finite. Therefore, we can write the system dynamics
as

z̈ = F (z)

where F (z) is a function that depends on the state z of the system only, because
due to (10.11) and the restriction to Z∗, the feedback in (10.14) can be found in
terms of x1, x3, x4 only. If it is possible to find a potential energy function U(z)
such that

F (z) = −∂U

∂z

then the system is conservative. Then, assuming ż(0) = 0, due to the law of
conservation of energy all solutions z(t) remain in the ellipse U(z) ≤ U(z(0)) [2].

However, U(z) may not exist, or it may be unbounded or not smooth. Therefore,
at this point, no strict conclusions may be drawn about the boundedness of the
solutions of x(t). But, if U(z) does not exist and thus that the system is not
conservative, this implies that there is energy injection or dissipation, which may be
countered by a proper choice for the additional input v. As stated, the optimization
of (10.13) is only meaningful if the solution x(t) is bounded, and therefore we will
assume the following.

Assumption 10.4 For a desired motion described by (10.11), starting from ini-
tial conditions x◦ ∈ Z∗, there is a v such that the solution x(t) of the system
(10.10), (10.14), remains within an ellipse defined by the initial conditions. •

Remark 10.5 The preceding analysis implies that v ≡ 0 should give the desired
behavior. Simulation examples in Section 10.6 show that this is indeed the case for
some nontrivial periodic motions in (x1, x2). �

10.5 Optimization

In the previous Section, it was established that the maximal controlled invariant
output-nulling submanifold Z∗ is of dimension 2. One dimension corresponds to the
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desired motion in (x1, x2), leaving one degree of freedom in (x3, x4). As mentioned
before, taking the pseudo inverse in (10.14) with respect to the desired norm on u
in (10.13) results in that the term 1

2�u�2u is already minimized among all possible
solutions. This leaves the remaining two terms to be minimized by a proper choice
of the initial conditions (x◦

3, x
◦
4).

In general, the optimization problem cannot be solved analytically. Therefore,
we propose a variation on the line search algorithm that exploits the fact that there
is only one degree of freedom left in the choice for the initial conditions (x◦

3, x
◦
4),

due to the restriction to Z∗. It is not possible to find the gradient descent of J
with respect to (x◦

3, x
◦
4) analytically, but since there is only one degree of freedom

to search in, the following algorithm can be effectively executed.

Step 0: Choose initial conditions (x◦
1, x

◦
2) for the duration of the algorithm. Deter-

mine an initial guess for x◦,1
3 and calculate x◦,1

4 such that x◦,1 ∈ Z∗. Choose
an initial step-size ε1.

Step k > 0: Determine the gradient descent direction:

• Calculate the cost Jk according to (10.13), by simulating the system
(10.10), (10.14) for a number of periods, starting from initial conditions
x◦,k.

• Compute J+
k and J−

k by computing the costs starting from initial con-

ditions x◦,k
3 + εk and x◦,k

3 − εk (and corresponding initial values x4)
respectively.

• Determine Jk+1 = min(J+
k , J−

k ).

• If Jk − Jk+1 is smaller than a threshold δ, terminate the algorithm: the
corresponding initial conditions minimize (10.13). Otherwise, continue
with the corresponding initial values and set εk+1 = εk/2.

Remark 10.6 Successful convergence of this algorithm relies on the assumption
that, since J is quadratic, it has at least a local minimum. Reaching the global
minimum depends on the initial guess x◦,1

3 , the threshold value δ, and the initial
stepsize ε1. �

10.6 Examples

In this Section, we illustrate the results of the preceding Sections with two examples.
The first example is the harmonic oscillator, which has optimal values for (x◦

3, x
◦
4)

that can be determined a priori. In the second example, the Duffing oscillator is
used to illustrate the effectiveness of the optimization process for nontrivial periodic
motions.
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10.6.1 The Harmonic Oscillator

The harmonic oscillator with unit frequency and amplitude is described in the form
(10.11) as:

ẋ1 = x2, ẋ2 = −x1

which admits the analytical solution

x1(t) = cos t, x2(t) = − sin t

It follows that the submanifold Z1 is defined as

Z1 = {x ∈ M | 1
mx4(x3 − x1) + x1 = 0}

It is well known that the harmonic oscillator can be implemented by tuning the
stiffness to the frequency of the desired oscillation, i.e., choosing k such that ω =�
k/m. In this example, we have m = 1 and ω = 1, and thus taking k = 1 gives

the desired motion. Indeed, taking x◦
3 = 0 and x◦

4 = 1 results in initial conditions
that are in Z1 for any (x◦

1, x
◦
2). Moreover, we compute LfΓ(x), with a(x1) = −x1,

we obtain

LfΓ(x) =

�
−x4 −

∂a

∂x1

�
x2

= (−x4 + 1)x2

which is always equal to zero for x4 = 1. Hence, the control input u can remain
zero, and the cost (10.13) is trivially minimized. This illustrates perfectly the
principle of embedding desired behavior.

10.6.2 The Duffing Oscillator

Duffing’s equation was originally introduced to model nonlinear oscillations with
a hardening stiffness effect, but it provides in general an example for studying
nonlinear oscillations [27]. In this example, the undamped Duffing oscillator is
considered, which takes the form:

ẍ1 + βx1 + αx3
1 = γ (10.15)

with α > 0. Oscillations of this type can be formulated in the form of (10.11)
by taking a(x1) = −βx1 − αx3

1. To compute the maximal controlled invariant
submanifold Z∗ ⊂ Nγ ⊂ M, we first compute

Z1 = {x ∈ M | Γ(x) + γ = 0}

with
Γ(x) = −βx1 − αx3

1 − x4(x3 − x1)



124

Table 10.1: Parameter values

Desired motion (x◦
1, x

◦
2) (−2, 0)

α,β, γ 1,−2, 3
Cost criterion � · �r̄ � · � (2-norm)

� · �k � · � (2-norm)
� · �u � · �M̃ (weighted 2-norm with M̃ = diag(1, 4))

Optimization δ 0.005
ε1 0.2

It follows, for any initial conditions (x◦
1, x

◦
2), that (x

◦
3, x

◦
4) must satisfy:

x◦
4 =

−βx◦
1 − αx◦

1
3 + γ

x◦
3 − x◦

1

Using this relation, the algorithm presented in Section 10.5 is executed, with the
parameter values presented in Table 10.1. Setting the cost for both x3 and x4

equally in the cost criterion (10.13) implies that there is no preference on using ei-
ther one. Note, however, that there are different costs associated with dynamically
changing x3 and x4, indicated by M̃ = diag(1, 4). For the initial guess of x◦,1

3 , we
take the average of the solution to (10.15).

Figure 10.1 shows the solution curves of the system (10.10), (10.14) in the
plane (x1, x2). Both the initial solutions and the optimal solution, according to the
algorithm of Section 10.5, are shown, but cannot be distinguished. The ◦ indicates
the initial guess x◦,1

3 for the algorithm, and the + the optimal x◦
3. Figure 10.2

shows the components x3 and x4 of both solutions. It can be clearly seen that
the optimal solution (solid black curve) achieves smaller excursions from the initial
conditions (dashed curves). It is noted that both the solutions x3 and x4 are
reduced comparatively (observe the scales of the vertical axes).

The cost criterion (10.13) is calculated over a time span of 100 s. For the optimal
solution found by the algorithm, a numerical value of J = 141.374 is found. A fine-
gridded brute force calculation of the cost for all possible initial conditions finds
a minimum of J = 141.316, illustrating the effectiveness of the algorithm. To
illustrate that it makes sense to have a varying stiffness, the process is repeated
with the same parameter values, but with u2 ≡ 0, i.e. a fixed stiffness. The
algorithm then finds an optimal cost of J = 158.397 (brute force: J = 155.998),
which is higher than obtained with the variable stiffness, even though we assigned a
higher cost to the dynamic changes of the stiffness with respect to the equilibrium
position.
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Fig. 1. Solutions in the plane (x1, x2) - The ◦ indicates the
initial guess x◦,1

3 , and the + the optimal initial value
for x3.
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Fig. 2. Solutions (x3, x4) - The grey curves correspond to
the first step of the algorithm of Section 5, the black
curves to the optimal solution, with the dashed lines
indicating the initial values.

of both solutions. It can be clearly seen that the optimal
solution (solid black curve) achieves smaller excursions
from the initial conditions (dashed curves). It is noted that
both the solutions x3 and x4 are reduced comparatively
(observe the scales of the vertical axes).

The cost criterion (13) is calculated over a time span of
100 s. For the optimal solution found by the algorithm, a
numerical value of J = 141.374 is found. A fine-gridded
brute force calculation of the cost for all possible initial
conditions finds a minimum of J = 141.316, illustrating
the effectiveness of the algorithm. To illustrate that it
makes sense to have a varying stiffness, the process is
repeated with the same parameter values, but with u2 ≡ 0,
i.e. a fixed stiffness. The algorithm then finds an optimal
cost of J = 158.397 (brute force: J = 155.998), which
is higher than obtained with the variable stiffness, even
though we assigned a higher cost to the dynamic changes
of the stiffness with respect to the equilibrium position.

7. CONCLUSIONS AND FUTURE WORK

In this paper, a cost criterion was proposed, that formu-
lates a measure of embodiment of desired behavior into a
variable stiffness actuator. In particular, minimization of
the cost criterion achieves a desired output motion with
minimum control effort. The effectiveness of this approach

was illustrated in an algebraic and a simulation example.
Currently, the algorithm is being implemented on a test
setup, and experimental results will be reported in a future
article.

Future work will focus on how the behavior of the variable
stiffness actuator should change in case of a disturbance,
considering the fact that the disturbance will add energy
to the system that may be used efficiently for actuation.
Furthermore, extensions to multi degree of freedom sys-
tems need to be formulated. Rather than considering each
degree of freedom separately, it should be investigated if a
coordinated approach to embodiment of desired behavior
in all degrees of freedom is possible.
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10.7 Conclusions and Future Work

In this paper, a cost criterion was proposed, that formulates a measure of embodi-
ment of desired behavior into a variable stiffness actuator. In particular, minimiza-
tion of the cost criterion achieves a desired output motion with minimum control
effort. The effectiveness of this approach was illustrated in an algebraic and a sim-
ulation example. Currently, the algorithm is being implemented on a test setup,
and experimental results will be reported in a future article.

Future work will focus on how the behavior of the variable stiffness actuator
should change in case of a disturbance, considering the fact that the disturbance will
add energy to the system that may be used efficiently for actuation. Furthermore,
extensions to multi degree of freedom systems need to be formulated. Rather
than considering each degree of freedom separately, it should be investigated if a
coordinated approach to embodiment of desired behavior in all degrees of freedom
is possible.
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Fig. 2. Solutions (x3, x4) - The grey curves correspond to
the first step of the algorithm of Section 5, the black
curves to the optimal solution, with the dashed lines
indicating the initial values.

of both solutions. It can be clearly seen that the optimal
solution (solid black curve) achieves smaller excursions
from the initial conditions (dashed curves). It is noted that
both the solutions x3 and x4 are reduced comparatively
(observe the scales of the vertical axes).

The cost criterion (13) is calculated over a time span of
100 s. For the optimal solution found by the algorithm, a
numerical value of J = 141.374 is found. A fine-gridded
brute force calculation of the cost for all possible initial
conditions finds a minimum of J = 141.316, illustrating
the effectiveness of the algorithm. To illustrate that it
makes sense to have a varying stiffness, the process is
repeated with the same parameter values, but with u2 ≡ 0,
i.e. a fixed stiffness. The algorithm then finds an optimal
cost of J = 158.397 (brute force: J = 155.998), which
is higher than obtained with the variable stiffness, even
though we assigned a higher cost to the dynamic changes
of the stiffness with respect to the equilibrium position.

7. CONCLUSIONS AND FUTURE WORK

In this paper, a cost criterion was proposed, that formu-
lates a measure of embodiment of desired behavior into a
variable stiffness actuator. In particular, minimization of
the cost criterion achieves a desired output motion with
minimum control effort. The effectiveness of this approach

was illustrated in an algebraic and a simulation example.
Currently, the algorithm is being implemented on a test
setup, and experimental results will be reported in a future
article.

Future work will focus on how the behavior of the variable
stiffness actuator should change in case of a disturbance,
considering the fact that the disturbance will add energy
to the system that may be used efficiently for actuation.
Furthermore, extensions to multi degree of freedom sys-
tems need to be formulated. Rather than considering each
degree of freedom separately, it should be investigated if a
coordinated approach to embodiment of desired behavior
in all degrees of freedom is possible.

REFERENCES

Arnol’d, V. (1989). Mathematical Methods of Classical
Mechanics. Springer-Verlag.

Ben-Israel, A. and Greville, T. (2003). Generalized In-
verses. Springer.

Bicchi, A. and Tonietti, G. (2004). Fast and ‘soft-arm’
tactics: Dealing with the safety-performance tradeoff
in robot arms design and control. IEEE Robotics and
Automation Magazine, 11(2), 22–33.

Guckenheimer, J. and Holmes, P. (1983). Nonlinear
Oscillations, Dynamical Systems and Bifurcations of
Vector Fields. Springer.

Hogan, N. (1985). Impedance control: An approach to
manipulation: Part I — theory. Journal of Dynamic
Systems, Measurement, and Control, 107(1), 1–7.

Nijmeijer, H. and van der Schaft, A. (1990). Nonlinear
Dynamical Control Systems. Springer.

Palli, G., Melchiorri, C., and De Luca, A. (2008). On
the feedback linearization of robots with variable joint
stiffness. In Proceedings of the IEEE International
Conference on Robotics and Automation.

Stramigioli, S., van Oort, G., and Dertien, E. (2008). A
concept for a new energy efficient actuator. In Proceed-
ings of the IEEE/ASME International Conference on
Advanced Intelligent Mechatronics.

Strogatz, S. (1994). Nonlinear Dynamics and Chaos.
Perseus Books.

Tonietti, G., Schiavi, R., and Bicchi, A. (2005). Design
and control of a variable stiffness actuator for safe and
fast physical human/robot interaction. In Proceedings
of the IEEE International Conference on Robotics and
Automation.

Uemura, M. and Kawamura, S. (2009). Resonance-based
motion control method for multi-joint robot through
combining stiffness adaptation and iterative learning
control. In Proceedings of the IEEE International Con-
ference on Robotics and Automation.

van Dijk, M. and Stramigioli, S. (2008). Energy conserva-
tive limit cycle oscillations. In Proceedings of the 17th
IFAC World Congress.

Visser, L.C., Carloni, R., Ünal, R., and Stramigioli, S.
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11.1 Introduction

Robust and energy efficient bipedal locomotion in robotics is an interesting research
topic with many open questions. In particular, on one side of the spectrum, robust
bipedal robots are being developed, but without much consideration for energy
efficiency [6]. On the other side of the spectrum, extremely efficient bipedal loco-
motion is being achieved by exploiting passive robot dynamics [11]. However, the
gaits of such passive dynamic walkers lack robustness [47].

Human walking is both robust and energy efficient, and a better understanding
of human walking could lead to the design of robots achieving similar performance
levels. To develop this understanding, models have been proposed that capture the
essential properties of human gaits. One remarkably simple model is the bipedal
spring-loaded inverted pendulum (SLIP) model, proposed in [21]. Despite its sim-
plicity, the model accurately reproduces the hip trajectory and ground reaction
force profiles observed in human gaits. Furthermore, the model encodes a wide
variety of gaits, ranging from slow walking to running, each with characteristic
robustness properties [44].

It has been shown that the bipedal SLIP model can be used to generate reference
gaits for a fully actuated bipedal robot [20, 38]. However, the human musculoskele-
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tal system enables the leg stiffness to be varied continuously, in order to adapt to
different gaits and terrains. These stiffness variations also play a role in disturbance
rejection, for example in uneven terrain with sudden and unexpected changes in
the walking surface. Variable stiffness in the legs of the bipedal SLIP walker has
been shown to increase energy efficiency [57, 22] and improve robustness [36]. Re-
cent advances in the field of variable stiffness actuators, a class of actuators that
allow the actuator output stiffness to be changed independently from the actuator
output position [62], are enabling the realization of robotic walkers with physically
variable leg stiffness. Therefore, further research into bipedal walking with variable
leg stiffness should be pursued, with the aim of getting closer to realizing bipedal
walking robots with human-like performance characteristics.

In this work, we present a constructive method for modeling and controlling
bipedal robotic walkers with controllable leg stiffness, starting from the conven-
tional bipedal SLIP model. We iteratively extend this model, first by making the
stiffness controllable, then by adding a swing leg and its dynamics, and then further
by including a knee in the swing leg. In parallel, we derive a control strategy, which
is extended with each model iteration. For each iteration, we prove the stabiliz-
ing properties of the controller, showing that the controller derived for the anchor
model in the first iteration is sufficiently robust to handle the increasingly complex
dynamics in subsequent iterations. Furthermore, it is shown that the controller is
energy-efficient by exploiting the compliance of the legs. This model and controller
can serve as a template for bipedal robot control strategies.

The paper is organized as follows. In Section 11.2, we revisit the bipedal SLIP
model, as presented in [21], and analyze its dynamics. Then, in Section 11.3, we
extend the bipedal SLIP model to have controllable stiffness (the V-SLIP model,
for Variable SLIP), and derive a control strategy that renders a natural gait of the
SLIP model asymptotically stable. In Section 11.4, the controlled V-SLIP model
is extended to include feet, with the aim of introducing swing leg dynamics. The
V-SLIP control strategy is extended to handle the extra degrees of freedom, and
the stabilizing properties of the controller are demonstrated. The swing leg model
is further refined in Section 11.5 by adding knees, with again further extension of
the control strategy. A comparison of the models and their controllers is presented
in Section 11.6, and Section 11.7 concludes the paper with a discussion and final
remarks.

Conventions in Notation

To avoid notational clutter, variable names will be reused for different models.
However, this reuse is consistent, and variables with the same name indicate the
same quantity in the various models. For example, qi denotes configuration vari-
ables, and pi denotes momentum variables, state vectors are named x, and f(x)
and gi(x) are drift and input vector fields on the state manifold respectively. The
Lie-derivative of a function h along a vector field X is denoted by LXh. Function
arguments are omitted where this is considered possible.
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Fig. 1. The bipedal SLIP model—The model consists of a point mass
mh, located in the hip joint, i.e. where two massless telescopic springs,
with a constant spring stiffness k0 and rest length L0, are connected. The
configuration variables (q1, q2) describe the position of the hip.

variables, and pi denotes momentum variables, state vectors
are named x, and f(x) and gi(x) are drift and input vector
fields on the state manifold respectively. The Lie-derivative
of a function h along a vector field X is denoted by LXh.
Function arguments are omitted where this is considered
possible.

II. THE BIPEDAL SLIP MODEL

In this Section, we revisit the bipedal SLIP model, as
presented in [4]. The model is depicted in Fig. 1. It consists
of a point mass mh, located in the joint connecting the two
legs, i.e. the hip joint. The legs consist of massless telescopic
springs of stiffness k0 and rest length L0. The configuration
variables (q1, q2) =: q describe the planar position of the point
mass, with (p1, p2) =: p the associated momentum variables.
In the following, we derive the dynamic equations for this
system, and analyze its dynamics.

A. System Dynamics
The bipedal SLIP model shows, for appropriately chosen

initial conditions [4], [5], a passive walking gait as illustrated
in Fig. 2. In order to derive the dynamic equations that describe
the gait of this model, two phases need to be considered: 1)
two legs are in contact with the ground (i.e. the double support
phase), and 2) one leg is in contact with the ground (i.e. the
single support phase). Furthermore, we consider the parameter
α0, which is the angle at which the massless leg touches down
at the end of the single support phase, as indicated in Fig. 2.
The contact conditions are determined by the spring rest

length L0 and angle of attack α0, as shown in Fig. 2. In
particular, if the system is in the single support phase, the
touchdown event of the other leg occurs when

q2 = L0 sin(α0), (1)

and at this moment the foot contact point c2 is calculated as

c2 = q1 + L0 cos(α0).

Conversely, when the system is in the double support phase,
the transition to the single support phase occurs when either

L
0

α0

q(t)

L0 sin(α0)

SS DS SS DS SS

Fig. 2. Passive gait of the bipedal SLIP model—The model alternates
between single support (SS) and double support (DS) phases, depending on
the hip height and the model parameters L0 and α0. The gray shading will be
used throughout this paper to indicate that the walker is in the double support
phase.

of the two springs reaches its rest length with non-zero speed,
and thus loses contact with the ground, i.e. when

�
(q1 − ci)2 + q22 = L0, i = 1, 2. (2)

In nominal conditions, only the trailing leg is allowed to lift
off, after which the contact point c2 is relabeled as c1 to
correspond to the notation used for the single support phase.
In order to derive the dynamic equations, we define the

kinetic energy function K = 1
2p

TM−1p, where

M = diag(mh,mh) (3)

is the mass matrix and p := Mq̇ are the momentum variables.
The potential energy function is defined as

V = mhg0q2 + 1
2k0(L0 − L1)

2 + 1
2k0(L0 − L2)

2,

where Li :=
�
(q1 − ci)2 + q22 , and g0 is the gravitational

acceleration. During the single support phase, we set L2 ≡ L0

to eliminate the influence of this virtually swinging leg.
The dynamic equations in Hamiltonian form are defined

through the Hamiltonian energy function H = K + V and
given by

d
dt

�
q
p

�
=

�
0 I
−I 0

��∂H
∂q
∂H
∂p

�
. (4)

It is noted that solutions of (4) are of class C2. This is due
to the fact that the ∂V

∂q is not differentiable at the moment of
phase transition. This is because the massless second leg does
not have a zero rate of change of length at the moment of
touchdown, i.e.

d
dt
L2

���
t=t+touchdown

�= 0,

where t+touchdown indicates that the time-derivative is taken on
the right of the discontinuity. It will be shown later that this
has consequences for the controller design.

III. THE CONTROLLED V-SLIP MODEL

The passive bipedal SLIP model provides no control inputs,
and therefore the only way to influence its behavior is by the
choice of initial conditions. Therefore, it is proposed to extend

Figure 11.1: The bipedal SLIP model—The model consists of a point mass mh, located in the
hip joint, i.e. where two massless telescopic springs, with a constant spring stiffness k0 and rest
length L0, are connected. The configuration variables (q1, q2) describe the position of the hip.

11.2 The Bipedal SLIP Model

In this Section, we revisit the bipedal SLIP model, as presented in [21]. The
model is depicted in Fig. 11.1. It consists of a point mass mh, located in the joint
connecting the two legs, i.e. the hip joint. The legs consist of massless telescopic
springs of stiffness k0 and rest length L0. The configuration variables (q1, q2) =: q
describe the planar position of the point mass, with (p1, p2) =: p the associated
momentum variables. In the following, we derive the dynamic equations for this
system, and analyze its dynamics.

11.2.1 System Dynamics

The bipedal SLIP model shows, for appropriately chosen initial conditions [21, 44],
a passive walking gait as illustrated in Fig. 11.2. In order to derive the dynamic
equations that describe the gait of this model, two phases need to be considered:
1) two legs are in contact with the ground (i.e. the double support phase), and 2)
one leg is in contact with the ground (i.e. the single support phase). Furthermore,
we consider the parameter α0, which is the angle at which the massless leg touches
down at the end of the single support phase, as indicated in Fig. 11.2.

The contact conditions are determined by the spring rest length L0 and angle
of attack α0, as shown in Fig. 11.2. In particular, if the system is in the single
support phase, the touchdown event of the other leg occurs when

q2 = L0 sin(α0), (11.1)

and at this moment the foot contact point c2 is calculated as

c2 = q1 + L0 cos(α0).



130
2

q1

q 2

mh

k0 k0

c2 c1

Fig. 1. The bipedal SLIP model—The model consists of a point mass
mh, located in the hip joint, i.e. where two massless telescopic springs,
with a constant spring stiffness k0 and rest length L0, are connected. The
configuration variables (q1, q2) describe the position of the hip.

variables, and pi denotes momentum variables, state vectors
are named x, and f(x) and gi(x) are drift and input vector
fields on the state manifold respectively. The Lie-derivative
of a function h along a vector field X is denoted by LXh.
Function arguments are omitted where this is considered
possible.

II. THE BIPEDAL SLIP MODEL

In this Section, we revisit the bipedal SLIP model, as
presented in [4]. The model is depicted in Fig. 1. It consists
of a point mass mh, located in the joint connecting the two
legs, i.e. the hip joint. The legs consist of massless telescopic
springs of stiffness k0 and rest length L0. The configuration
variables (q1, q2) =: q describe the planar position of the point
mass, with (p1, p2) =: p the associated momentum variables.
In the following, we derive the dynamic equations for this
system, and analyze its dynamics.

A. System Dynamics
The bipedal SLIP model shows, for appropriately chosen

initial conditions [4], [5], a passive walking gait as illustrated
in Fig. 2. In order to derive the dynamic equations that describe
the gait of this model, two phases need to be considered: 1)
two legs are in contact with the ground (i.e. the double support
phase), and 2) one leg is in contact with the ground (i.e. the
single support phase). Furthermore, we consider the parameter
α0, which is the angle at which the massless leg touches down
at the end of the single support phase, as indicated in Fig. 2.
The contact conditions are determined by the spring rest

length L0 and angle of attack α0, as shown in Fig. 2. In
particular, if the system is in the single support phase, the
touchdown event of the other leg occurs when

q2 = L0 sin(α0), (1)

and at this moment the foot contact point c2 is calculated as

c2 = q1 + L0 cos(α0).

Conversely, when the system is in the double support phase,
the transition to the single support phase occurs when either
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Fig. 2. Passive gait of the bipedal SLIP model—The model alternates
between single support (SS) and double support (DS) phases, depending on
the hip height and the model parameters L0 and α0. The gray shading will be
used throughout this paper to indicate that the walker is in the double support
phase.

of the two springs reaches its rest length with non-zero speed,
and thus loses contact with the ground, i.e. when

�
(q1 − ci)2 + q22 = L0, i = 1, 2. (2)

In nominal conditions, only the trailing leg is allowed to lift
off, after which the contact point c2 is relabeled as c1 to
correspond to the notation used for the single support phase.
In order to derive the dynamic equations, we define the

kinetic energy function K = 1
2p

TM−1p, where

M = diag(mh,mh) (3)

is the mass matrix and p := Mq̇ are the momentum variables.
The potential energy function is defined as

V = mhg0q2 + 1
2k0(L0 − L1)

2 + 1
2k0(L0 − L2)

2,

where Li :=
�
(q1 − ci)2 + q22 , and g0 is the gravitational

acceleration. During the single support phase, we set L2 ≡ L0

to eliminate the influence of this virtually swinging leg.
The dynamic equations in Hamiltonian form are defined

through the Hamiltonian energy function H = K + V and
given by

d
dt

�
q
p

�
=

�
0 I
−I 0

��∂H
∂q
∂H
∂p

�
. (4)

It is noted that solutions of (4) are of class C2. This is due
to the fact that the ∂V

∂q is not differentiable at the moment of
phase transition. This is because the massless second leg does
not have a zero rate of change of length at the moment of
touchdown, i.e.

d
dt
L2

���
t=t+touchdown

�= 0,

where t+touchdown indicates that the time-derivative is taken on
the right of the discontinuity. It will be shown later that this
has consequences for the controller design.

III. THE CONTROLLED V-SLIP MODEL

The passive bipedal SLIP model provides no control inputs,
and therefore the only way to influence its behavior is by the
choice of initial conditions. Therefore, it is proposed to extend

Figure 11.2: Passive gait of the bipedal SLIP model—The model alternates between single support
(ss) and double support (ds) phases, depending on the hip height and the model parameters L0

and α0. The gray shading will be used throughout this paper to indicate that the walker is in the
double support phase.

Conversely, when the system is in the double support phase, the transition to the
single support phase occurs when either of the two springs reaches its rest length
with non-zero speed, and thus loses contact with the ground, i.e. when

�
(q1 − ci)2 + q22 = L0, i = 1, 2. (11.2)

In nominal conditions, only the trailing leg is allowed to lift off, after which the
contact point c2 is relabeled as c1 to correspond to the notation used for the single
support phase.

In order to derive the dynamic equations, we define the kinetic energy function
K = 1

2p
TM−1p, where

M = diag(mh,mh) (11.3)

is the mass matrix and p := Mq̇ are the momentum variables. The potential energy
function is defined as

V = mhg0q2 +
1
2k0(L0 − L1)

2 + 1
2k0(L0 − L2)

2,

where Li :=
�
(q1 − ci)2 + q22 , and g0 is the gravitational acceleration. During the

single support phase, we set L2 ≡ L0 to eliminate the influence of this virtually
swinging leg.

The dynamic equations in Hamiltonian form are defined through the Hamilto-
nian energy function H = K + V and given by

d

dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
. (11.4)

It is noted that solutions of (11.4) are of class C2. This is due to the fact that
the ∂V

∂q is not differentiable at the moment of phase transition. This is because the
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Fig. 3. The V-SLIP model—In contrast to the bipedal SLIP model, the V-
SLIP model has a controllable leg stiffness. This provides two control inputs
during the double support phase, but only one control input during the single
support phase, rendering the system underactuated.

the bipedal SLIP model to have massless telescopic springs
with variable stiffness [12]. This bipedal V-SLIP (for Variable
SLIP) model is depicted in Fig. 3. The difference with respect
to the bipedal SLIP model is that the leg stiffness now has a
controllable part, i.e. ki = k0 + ui, i = 1, 2. In this Section
we give the dynamic equations for this system and present a
stabilizing controller.

A. System Dynamics

The autonomous part of the dynamics of the bipedal V-SLIP
model is the same as for the bipedal SLIP model. To include
the control inputs, (4) is extended, arriving at the dynamics
for the V-SLIP model in port-Hamiltonian form:

d
dt

�
q
p

�
=

�
0 I
−I 0

��∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�
∂H
∂q
∂H
∂p

�
,

(5)

with u = (u1, u2) the controlled leg stiffness, and H is as
defined in Section II-A. The input matrix B is given by

B =

�
∂φ1

∂q1
∂φ2

∂q1
∂φ1

∂q2
∂φ2

∂q2

�
,

with

φ1 = − 1
2 (L0 − L1)

2 and φ2 = − 1
2 (L0 − L2)

2.

The output y is dual to u, and it is readily verified that the
dual product �u|y� has the units of power [13].
As in Section II-A, we set L2 ≡ L0 during the single

support phase to eliminate the influence of the swing leg. It is
emphasized that the control inputs ui, i = 1, 2 are restricted,
such that the total leg stiffness is physically meaningful, i.e.

ui ∈ R | 0 < k0 + ui < ∞. (6)

B. Controller Design

The bipedal SLIP model already shows stable walking gaits,
with a relatively large basin of attraction [5]. As shown in our
previous work, it is possible to tune the spring stiffness k to
further increase the robustness of the gait, while minimally
modifying the natural dynamics of the walker [12].
The control strategy uses a natural gait of the bipedal SLIP

model as reference, i.e. trajectories (q◦(t), q̇◦(t)) that are a
solution of (4), where q̇ is defined as q̇ = M−1p. However,
the bipedal V-SLIP model is underactuated during the single
support phase (since there is only one leg in contact with
the ground), and thus it is not possible to track (q◦(t), q̇◦(t))
exactly. To avoid that the walker lags behind the reference
during the underactuated phase, we propose to instead de-
fine a curve in the configuration space by parameterizing
(q◦(t), q̇◦(t)) by the horizontal position q1, similar to the
approach presented in [14]. This is possible1 as long as q̇1 > 0.
Then, the desired reference gait can be equivalently described
as (q∗2(q1), q̇

∗
1(q1)). The control objective is to have the hip

trajectory converge to an arbitrary small neighborhood of this
reference gait.
In formulating the control strategy, we define the state x =

(q, p) and rewrite (5) in standard form as

ẋ = f(x) +
�

i

gi(x)ui. (7)

The following control strategy is proposed.
Proposition 1: Given parameterized reference state trajec-

tories (q∗2 , q̇∗1), define the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1.

Then the following control strategy renders solutions of (5)
asymptotically converging to (q∗2 , q̇

∗
1):

• during the single support phase,

u1 = − 1

Lg1Lfh1

�
L2
fh1 + κdLfh1 + κph1

�
(8)

and u2 ≡ 0;
• during the double support phase, when the leading leg
length satisfies L0 − Le ≤ L1 < L0 (i.e. just after the
touchdown event), or when the trailing leg length satisfies
L0 − Le ≤ L2 < L0 (just before the lift-off event), for
some small Le > 0:

�
u1

u2

�
= −A�

�
L2
fh1 + κdLfh1 + κph1

�
, (9)

with
A =

�
Lg1Lfh1 Lg2Lfh1

�
,

and with � denoting the Moore-Penrose2 pseudo inverse;

1Exact parameterization is not possible, because q(t) is of class C2 only,
as outlined in Section II-A. Approximating (q◦(t), q̇◦(t)) by finite Fourier
series is an alternative that gives satisfactory results, as will be demonstrated.
2Since we are addressing a numerical issue, we are not concerned about

deriving a proper invariant metric for defining the pseudo-inverse. Instead, we
use the Euclidian metric.

Figure 11.3: The V-SLIP model—In contrast to the bipedal SLIP model, the V-SLIP model has
a controllable leg stiffness. This provides two control inputs during the double support phase,
but only one control input during the single support phase, rendering the system underactuated.

massless second leg does not have a zero rate of change of length at the moment of
touchdown, i.e.

d

dt
L2

���
t=t+touchdown

�= 0,

where t+touchdown indicates that the time-derivative is taken on the right of the
discontinuity. It will be shown later that this has consequences for the controller
design.

11.3 The Controlled V-SLIP Model

The passive bipedal SLIP model provides no control inputs, and therefore the only
way to influence its behavior is by the choice of initial conditions. Therefore, it is
proposed to extend the bipedal SLIP model to have massless telescopic springs with
variable stiffness [69]. This bipedal V-SLIP (for Variable SLIP) model is depicted
in Fig. 11.3. The difference with respect to the bipedal SLIP model is that the leg
stiffness now has a controllable part, i.e. ki = k0 + ui, i = 1, 2. In this Section we
give the dynamic equations for this system and present a stabilizing controller.

11.3.1 System Dynamics

The autonomous part of the dynamics of the bipedal V-SLIP model is the same
as for the bipedal SLIP model. To include the control inputs, (11.4) is extended,
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arriving at the dynamics for the V-SLIP model in port-Hamiltonian form:

d

dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�

∂H
∂q
∂H
∂p

�
,

(11.5)

with u = (u1, u2) the controlled leg stiffness, and H is as defined in Section 11.2.1.
The input matrix B is given by

B =

�
∂φ1

∂q1
∂φ2

∂q1
∂φ1

∂q2
∂φ2

∂q2

�
,

with
φ1 = − 1

2 (L0 − L1)
2 and φ2 = − 1

2 (L0 − L2)
2.

The output y is dual to u, and it is readily verified that the dual product �u|y� has
the units of power [14].

As in Section 11.2.1, we set L2 ≡ L0 during the single support phase to eliminate
the influence of the swing leg. It is emphasized that the control inputs ui, i = 1, 2
are restricted, such that the total leg stiffness is physically meaningful, i.e.

ui ∈ R | 0 < k0 + ui < ∞. (11.6)

11.3.2 Controller Design

The bipedal SLIP model already shows stable walking gaits, with a relatively large
basin of attraction [44]. As shown in our previous work, it is possible to tune the
spring stiffness k to further increase the robustness of the gait, while minimally
modifying the natural dynamics of the walker [69].

The control strategy uses a natural gait of the bipedal SLIP model as reference,
i.e. trajectories (q◦(t), q̇◦(t)) that are a solution of (11.4), where q̇ is defined as
q̇ = M−1p. However, the bipedal V-SLIP model is underactuated during the single
support phase (since there is only one leg in contact with the ground), and thus it is
not possible to track (q◦(t), q̇◦(t)) exactly. To avoid that the walker lags behind the
reference during the underactuated phase, we propose to instead define a curve in
the configuration space by parameterizing (q◦(t), q̇◦(t)) by the horizontal position
q1, similar to the approach presented in [49]. This is possible1 as long as q̇1 > 0.
Then, the desired reference gait can be equivalently described as (q∗2(q1), q̇

∗
1(q1)).

The control objective is to have the hip trajectory converge to an arbitrary small
neighborhood of this reference gait.

1Exact parameterization is not possible, because q(t) is of class C2 only, as outlined in Sec-
tion 11.2.1. Approximating (q◦(t), q̇◦(t)) by finite Fourier series is an alternative that gives sat-
isfactory results, as will be demonstrated.
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In formulating the control strategy, we define the state x = (q, p) and rewrite
(11.5) in standard form as

ẋ = f(x) +
�

i

gi(x)ui. (11.7)

The following control strategy is proposed.

Proposition 11.1 Given parameterized reference state trajectories (q∗2 , q̇
∗
1), define

the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1.

Then the following control strategy renders solutions of (11.5) asymptotically con-
verging to (q∗2 , q̇

∗
1):

• during the single support phase,

u1 = − 1

Lg1Lfh1

�
L2
fh1 + κdLfh1 + κph1

�
(11.8)

and u2 ≡ 0;

• during the double support phase, when the leading leg length satisfies L0−Le ≤
L1 < L0 (i.e. just after the touchdown event), or when the trailing leg length
satisfies L0 − Le ≤ L2 < L0 (just before the lift-off event), for some small
Le > 0: �

u1

u2

�
= −A�

�
L2
fh1 + κdLfh1 + κph1

�
, (11.9)

with

A =
�
Lg1Lfh1 Lg2Lfh1

�
,

and with � denoting the Moore-Penrose2 pseudo inverse;

• during the double support phase, when both leg lengths satisfy Li < L0 − Le,

�
u1

u2

�
= −A−1

�
L2
fh1 + κdLfh1 + κph1

Lfh2 + κvh2

�
, (11.10)

with

A =

�
Lg1Lfh1 Lg2Lfh1

Lg1h2 Lg2h2

�
.

2Since we are addressing a numerical issue, we are not concerned about deriving a proper
invariant metric for defining the pseudo-inverse. Instead, we use the Euclidian metric.
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In particular, for suitably chosen constant κp,κd,κv > 0, the control strategy
(11.8), (11.9), (11.10) realizes:

lim
t→∞

q∗2(q1(t))− q2(t) = 0,

and, for some arbitrary small ε > 0,

lim
t→∞

|q̇∗1(q1(t))− q̇1(t)| < ε.

Remark 11.1 The control input (11.9) is introduced, because the system (11.5) is
no longer controllable when one of the legs reaches its rest length L0. As such, the
transition domain defined by Le is necessary to comply with (11.6). �

Remark 11.2 As observed in Section 11.2.1, the state trajectories q(t) are of class
C2 only, and therefore it is not possible to make the leg stiffness a state of the
system, because higher order Lie-derivatives do not exist. �

Proof: It is straightforward to show that, during the single support phase,
Lg1Lfh1 in (11.8) is bounded away from zero if 0 < L1 < L0. Similarly, during the
double support phase, the matrix A in (11.10) is invertible if 0 < Li < L0, i = 1, 2
and in addition c1 �= c2. These conditions are met through the definition of the
phase transitions (11.1) and (11.2).

During the double support phase, (11.10) renders the system strongly input-
output decoupled, i.e. hi is invariant under uj for i �= j [42]. Therefore, and by
(11.8), (11.9), during both the single and double support phases the error dynamics
h1(t) are described by

ḧ1 + κdḣ1 + κp = 0.

If κp,κd are chosen such that the zeros are in the open left half-plane, then the
dynamics of h1 are asymptotically stable during each phase. The error function
h1 depends on the configuration q only, and q(t) is continuous and differentiable
across the phase transitions. Therefore,

lim
t→∞

q∗2(q1(t))− q2(t) = 0

will be achieved.
The dynamics of the error function h2 are, during the double support phase,

described by
ḣ2 + κvh2 = 0,

which has as analytic solution

h2(t) = e−κv(t−tds)h2(tds), t ≥ tds,

where tds is the time instant of the last touchdown event. For any κv > 0, h2(t) is
asymptotically stable during the double support phase.
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Table 11.1: Controlled V-SLIP model parameter values.

Parameter Value Unit Description

mh 15.0 kg Hip mass
L0 1.0 m Spring rest length
Le 0.01 m Phase transition margin
α0 62.5 ◦ Angle of attack
k0 2000 N/m Nominal leg stiffness
kmin 0 N/m Lower bound on leg stiffness
kmax 10000 N/m Upper bound on leg stiffness
κp 350 Control parameter
κd 40 Control parameter
κv 15 Control parameter

However, during the single support phase, the dynamics of h2(t) are uncon-
trolled. During this phase, the control action of u1 will result in a change of kinetic
energy with respect to the constant energy level of the SLIP reference gait. Since
u1 is bounded, as defined in (11.6), the total increase in kinetic energy is also
bounded. Let ∆Ess denote the increase of energy during the single support phase
due to u1. There exists a constant C1 such that

|∆E| < C1,

which implies, since h2(t) is a function of the momentum variable p2, that

|h2(tds)| < C2 < C1.

This in turn implies that there exists κv < ∞ that brings h2(t) in a neighborhood
ε of zero within the duration of the double support phase. �

With the parameters as listed in Table 11.1, a numeric simulation has been
carried out using the PyDSTool software package [10]. The reference (q∗2 , q̇

∗
1) has

been obtained by searching for a limit cycle of the uncontrolled SLIP model with
the same parameters. As shown in Fig. 11.4, the controller indeed achieves the
converges as claimed in Proposition 11.1. The error h2 is never exactly zero, because
the solutions to (11.4) are not analytical. Therefore the parameterized reference is
not an exact representation of the natural dynamics, yielding the mismatch in h2

during the single support phase.

11.4 The Controlled V-SLIP Model with Swing
Leg Dynamics

While the bipedal (V-)SLIP models do accurately reproduce hip trajectories ob-
served in human walking, and thus can give insights in human walking performance,
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4

• during the double support phase, when both leg lengths
satisfy Li < L0 − Le,

�
u1

u2

�
= −A−1

�
L2
fh1 + κdLfh1 + κph1

Lfh2 + κvh2

�
, (10)

with
A =

�
Lg1Lfh1 Lg2Lfh1

Lg1h2 Lg2h2

�
.

In particular, for suitably chosen constant κp,κd,κv > 0, the
control strategy (8), (9), (10) realizes:

lim
t→∞

q∗2(q1(t))− q2(t) = 0,

and, for some arbitrary small ε > 0,

lim
t→∞

|q̇∗1(q1(t)) − q̇1(t)| < ε.

Remark 1: The control input (9) is introduced, because the
system (5) is no longer controllable when one of the legs
reaches its rest length L0. As such, the transition domain
defined by Le is necessary to comply with (6). �
Remark 2: As observed in Section II-A, the state trajecto-

ries q(t) are of class C2 only, and therefore it is not possible
to make the leg stiffness a state of the system, because higher
order Lie-derivatives do not exist. �

Proof: It is straightforward to show that, during the single
support phase, Lg1Lfh1 in (8) is bounded away from zero if
0 < L1 < L0. Similarly, during the double support phase,
the matrix A in (10) is invertible if 0 < Li < L0, i = 1, 2
and in addition c1 �= c2. These conditions are met through the
definition of the phase transitions (1) and (2).
During the double support phase, (10) renders the system

strongly input-output decoupled, i.e. hi is invariant under uj

for i �= j [15]. Therefore, and by (8), (9), during both the
single and double support phases the error dynamics h1(t)
are described by

ḧ1 + κdḣ1 + κp = 0.

If κp,κd are chosen such that the zeros are in the open left
half-plane, then the dynamics of h1 are asymptotically stable
during each phase. The error function h1 depends on the
configuration q only, and q(t) is continuous and differentiable
across the phase transitions. Therefore,

lim
t→∞

q∗2(q1(t)) − q2(t) = 0

will be achieved.
The dynamics of the error function h2 are, during the double

support phase, described by

ḣ2 + κvh2 = 0,

which has as analytic solution

h2(t) = e−κv(t−tds)h2(tds), t ≥ tds,

where tds is the time instant of the last touchdown event. For
any κv > 0, h2(t) is asymptotically stable during the double
support phase.
However, during the single support phase, the dynamics of

h2(t) are uncontrolled. During this phase, the control action of

TABLE I
CONTROLLED V-SLIP MODEL PARAMETER VALUES.

Parameter Value Unit Description
mh 15.0 kg Hip mass
L0 1.0 m Spring rest length
Le 0.01 m Phase transition margin
α0 62.5 ◦ Angle of attack
k0 2000 N/m Nominal leg stiffness
kmin 0 N/m Lower bound on leg stiffness
kmax 10000 N/m Upper bound on leg stiffness
κp 350 Control parameter
κd 40 Control parameter
κv 15 Control parameter
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Fig. 4. Steady-state error functions for the controlled V-SLIP model—It can
be seen that for the control parameters listed in Table I the error functions
converge like claimed in Proposition 1.

u1 will result in a change of kinetic energy with respect to the
constant energy level of the SLIP reference gait. Since u1 is
bounded, as defined in (6), the total increase in kinetic energy
is also bounded. Let∆Ess denote the increase of energy during
the single support phase due to u1. There exists a constant C1

such that
|∆E| < C1,

which implies, since h2(t) is a function of the momentum
variable p2, that

|h2(tds)| < C2 < C1.

This in turn implies that there exists κv < ∞ that brings h2(t)
in a neighborhood ε of zero within the duration of the double
support phase.
With the parameters as listed in Table I, a numeric sim-

ulation has been carried out using the PyDSTool software
package [16]. The reference (q∗2 , q̇

∗
1) has been obtained by

searching for a limit cycle of the uncontrolled SLIP model
with the same parameters. As shown in Fig. 4, the controller
indeed achieves the converges as claimed in Proposition 1.
The error h2 is never exactly zero, because the solutions to
(4) are not analytical. Therefore the parameterized reference is
not an exact representation of the natural dynamics, yielding
the mismatch in h2 during the single support phase.

IV. THE CONTROLLED V-SLIP MODEL
WITH SWING LEG DYNAMICS

While the bipedal (V-)SLIP models do accurately reproduce
hip trajectories observed in human walking, and thus can give

Figure 11.4: Steady-state error functions for the controlled V-SLIP model—It can be seen that
for the control parameters listed in Table 11.1 the error functions converge like claimed in Propo-
sition 11.1.

the models are conceptual. In particular, all mass is assumed to be concentrated in
a single point mass at the hip, and the legs are assumed to be massless springs—
assumptions that cannot be considered valid for a robotic system.

In this Section we extend the V-SLIP model to incorporate swing leg dynamics.
This is done by adding a foot mass, as shown in Fig. 11.5 [70]. During the swing
phase, the leg is assumed to have a fixed length L0, while during the stance phase
it is again assumed to be a massless spring connecting the foot and the hip masses.
In this Section we derive the dynamic equations that govern the system behavior,
and extend the controller from Section 11.3.2 to handle the swing leg dynamics.

11.4.1 System Dynamics

In deriving the dynamics of the V-SLIP model with feet, we assume that:

• no slip or bouncing occurs in the foot contact points;

• the springs are unilateral, meaning that we only allow them to be compressed;

• during the single support phase, the swing leg is constraint to have length
L0.

Under these assumptions, during the double support phase, we can use the double
support phase model used in Section 11.3.1, and the model behavior is described
accordingly by (11.5).

During the single support phase, the model can be simplified as shown in
Fig. 11.6. The configuration of the system can be described by (q1, q2, q3), where
q3 ∈ [0,π) is the orientation of the swing leg. The total mass of the swing leg is
m = mh +mf . Since the swing leg is assumed to be a rigid link of length L0, its
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Fig. 5. The V-SLIP model with feet—By adding feet masses mf to the
V-SLIP model, swing leg dynamics are introduced. The swing leg is assumed
to be constraint at a length L0 during swing, and the stance foot is assumed
to be fixed to the ground, i.e. no slip or bouncing in the contact point.

insights in human walking performance, the models are con-
ceptual. In particular, all mass is assumed to be concentrated
in a single point mass at the hip, and the legs are assumed to
be massless springs—assumptions that cannot be considered
valid for a robotic system.
In this Section we extend the V-SLIP model to incorporate

swing leg dynamics. This is done by adding a foot mass,
as shown in Fig. 5 [17]. During the swing phase, the leg is
assumed to have a fixed length L0, while during the stance
phase it is again assumed to be a massless spring connecting
the foot and the hip masses. In this Section we derive the
dynamic equations that govern the system behavior, and extend
the controller from Section III-B to handle the swing leg
dynamics.

A. System Dynamics
In deriving the dynamics of the V-SLIP model with feet,

we assume that:
• no slip or bouncing occurs in the foot contact points;
• the springs are unilateral, meaning that we only allow
them to be compressed;

• during the single support phase, the swing leg is con-
straint to have length L0.

Under these assumptions, during the double support phase, we
can use the double support phase model used in Section III-A,
and the model behavior is described accordingly by (5).
During the single support phase, the model can be simplified

as shown in Fig. 6. The configuration of the system can be
described by (q1, q2, q3), where q3 ∈ [0,π) is the orientation
of the swing leg. The total mass of the swing leg is m =
mh +mf . Since the swing leg is assumed to be a rigid link
of length L0, its center of mass is at a distance

dcom =
mfL0

mh +mf

from the hip joint (as indicated in Fig. 6). The moment of
inertia of the leg around its center of mass is given by

Jcom = mhd
2
com +mf (L0 − dcom)

2.

q1

q 2

q3

m,Jcom
k0 + u1

L 0
d c
om

τ

c1

Fig. 6. Model simplification—Under the assumptions of a rigid swing leg
and no slip or bouncing in the foot contact point, the model depicted in Fig. 5
can be simplified during the single support phase. During the double support
phase, the model is reduced to the V-SLIP model, as shown in Fig. 3.

In order to derive the dynamic equations of the system for
the single support phase, we let (v1, v2, v3) =: v denote the
horizontal, vertical and rotational velocity of the (center of
mass of the) swing leg. These velocities are related to the rate
of change of the configuration variables q̇ by the Jacobian
matrix S(q), defined as:

S(q) =




1 0 dcom sin(q3)
0 1 −dcom cos(q3)
0 0 1



 , (11)

such that v = S(q)q̇. This allows to have the configuration
variables q coincide with those used in the V-SLIP model of
Section III. In particular, by defining p := Mv, with

M = diag(mh +mf ,mh +mf , Jcom) (12)

the mass matrix of the rigid body representing swing leg, the
dynamics during the single support phase can be derived in
terms of (q, p) as follows.
The kinetic energy is given by K = 1

2p
TM−1p, and we

derive the potential energy function V as

V = (mh +mf )g0(q2 − dcom sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function is given by H = K +
V , and we derive the dynamic equations in port-Hamiltonian
form by using the Boltzmann-Hamel equations [18], yielding:

d
dt

�
q
p

�
= J

�
∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�

∂H
∂q
∂H
∂p

�
,

(13)

where the skew-symmetric matrix J is given by

J =

�
0 S−1

−S−T S−T
�

∂T (ST p)
∂q − ∂(ST p)

∂q

�
S−1

�
.

Again, the output y is dual to the input u, so that �u|y�
defines a power flow. The control input u = (u1, τ), i.e. the

Figure 11.5: The V-SLIP model with feet—By adding feet masses mf to the V-SLIP model,
swing leg dynamics are introduced. The swing leg is assumed to be constraint at a length L0

during swing, and the stance foot is assumed to be fixed to the ground, i.e. no slip or bouncing
in the contact point.

center of mass is at a distance

dcom =
mfL0

mh +mf

from the hip joint (as indicated in Fig. 11.6). The moment of inertia of the leg
around its center of mass is given by

Jcom = mhd
2
com +mf (L0 − dcom)

2.

In order to derive the dynamic equations of the system for the single support
phase, we let (v1, v2, v3) =: v denote the horizontal, vertical and rotational velocity
of the (center of mass of the) swing leg. These velocities are related to the rate of
change of the configuration variables q̇ by the Jacobian matrix S(q), defined as:

S(q) =




1 0 dcom sin(q3)
0 1 −dcom cos(q3)
0 0 1



 , (11.11)

such that v = S(q)q̇. This allows to have the configuration variables q coincide
with those used in the V-SLIP model of Section 11.3. In particular, by defining
p := Mv, with

M = diag(mh +mf ,mh +mf , Jcom) (11.12)

the mass matrix of the rigid body representing swing leg, the dynamics during the
single support phase can be derived in terms of (q, p) as follows.

The kinetic energy is given by K = 1
2p

TM−1p, and we derive the potential
energy function V as

V = (mh +mf )g0(q2 − dcom sin(q3)) +
1
2k0(L0 − L1)

2.
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Fig. 5. The V-SLIP model with feet—By adding feet masses mf to the
V-SLIP model, swing leg dynamics are introduced. The swing leg is assumed
to be constraint at a length L0 during swing, and the stance foot is assumed
to be fixed to the ground, i.e. no slip or bouncing in the contact point.

insights in human walking performance, the models are con-
ceptual. In particular, all mass is assumed to be concentrated
in a single point mass at the hip, and the legs are assumed to
be massless springs—assumptions that cannot be considered
valid for a robotic system.
In this Section we extend the V-SLIP model to incorporate

swing leg dynamics. This is done by adding a foot mass,
as shown in Fig. 5 [17]. During the swing phase, the leg is
assumed to have a fixed length L0, while during the stance
phase it is again assumed to be a massless spring connecting
the foot and the hip masses. In this Section we derive the
dynamic equations that govern the system behavior, and extend
the controller from Section III-B to handle the swing leg
dynamics.

A. System Dynamics
In deriving the dynamics of the V-SLIP model with feet,

we assume that:
• no slip or bouncing occurs in the foot contact points;
• the springs are unilateral, meaning that we only allow
them to be compressed;

• during the single support phase, the swing leg is con-
straint to have length L0.

Under these assumptions, during the double support phase, we
can use the double support phase model used in Section III-A,
and the model behavior is described accordingly by (5).
During the single support phase, the model can be simplified

as shown in Fig. 6. The configuration of the system can be
described by (q1, q2, q3), where q3 ∈ [0,π) is the orientation
of the swing leg. The total mass of the swing leg is m =
mh +mf . Since the swing leg is assumed to be a rigid link
of length L0, its center of mass is at a distance

dcom =
mfL0

mh +mf

from the hip joint (as indicated in Fig. 6). The moment of
inertia of the leg around its center of mass is given by

Jcom = mhd
2
com +mf (L0 − dcom)

2.
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Fig. 6. Model simplification—Under the assumptions of a rigid swing leg
and no slip or bouncing in the foot contact point, the model depicted in Fig. 5
can be simplified during the single support phase. During the double support
phase, the model is reduced to the V-SLIP model, as shown in Fig. 3.

In order to derive the dynamic equations of the system for
the single support phase, we let (v1, v2, v3) =: v denote the
horizontal, vertical and rotational velocity of the (center of
mass of the) swing leg. These velocities are related to the rate
of change of the configuration variables q̇ by the Jacobian
matrix S(q), defined as:

S(q) =




1 0 dcom sin(q3)
0 1 −dcom cos(q3)
0 0 1



 , (11)

such that v = S(q)q̇. This allows to have the configuration
variables q coincide with those used in the V-SLIP model of
Section III. In particular, by defining p := Mv, with

M = diag(mh +mf ,mh +mf , Jcom) (12)

the mass matrix of the rigid body representing swing leg, the
dynamics during the single support phase can be derived in
terms of (q, p) as follows.
The kinetic energy is given by K = 1

2p
TM−1p, and we

derive the potential energy function V as

V = (mh +mf )g0(q2 − dcom sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function is given by H = K +
V , and we derive the dynamic equations in port-Hamiltonian
form by using the Boltzmann-Hamel equations [18], yielding:
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where the skew-symmetric matrix J is given by

J =

�
0 S−1

−S−T S−T
�

∂T (ST p)
∂q − ∂(ST p)

∂q

�
S−1

�
.

Again, the output y is dual to the input u, so that �u|y�
defines a power flow. The control input u = (u1, τ), i.e. the

Figure 11.6: Model simplification—Under the assumptions of a rigid swing leg and no slip or
bouncing in the foot contact point, the model depicted in Fig. 11.5 can be simplified during the
single support phase. During the double support phase, the model is reduced to the V-SLIP
model, as shown in Fig. 11.3.

Then, the Hamiltonian energy function is given by H = K + V , and we derive
the dynamic equations in port-Hamiltonian form by using the Boltzmann-Hamel
equations [15], yielding:

d

dt

�
q
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= J
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(11.13)

where the skew-symmetric matrix J is given by

J =

�
0 S−1

−S−T S−T
�

∂T (ST p)
∂q − ∂(ST p)

∂q

�
S−1

�
.

Again, the output y is dual to the input u, so that �u|y� defines a power flow. The
control input u = (u1, τ), i.e. the controllable part of the stance leg stiffness, and
the torque applied to the swing leg. The input matrix B is given by

B = S−T





∂φ1

∂q1
0

∂φ1

∂q2
0

0 1



 ,

with
φ1 = − 1

2 (L0 − L1)
2.

The mapping by S−T is necessary because the inputs are not collocated with v,
but with q̇, as can be seen in Fig. 11.6.
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11.4.2 Phase Transitions

Unlike the V-SLIP model, where in both the double and single support phases the
same configuration variables are used, this model uses two sets of configuration
variables: in the double support phase only the position of the hip with respect
to the foot contact points is relevant, while in the single support phase also the
swing leg orientation is required. Therefore, phase transition mappings need to be
defined as follows.

Transition Conditions

Similar to the (V-)SLIP models, the touchdown event occurs when the foot of the
swing leg has passed in front of the hip,3 and in addition, recalling that the swing
leg is constraint to have length L0 during the swing phase,

q2 = L0 sin(q3).

At the time instance that both of these conditions are met, the new foot contact
point c2 is computed as

c2 = q1 − L0 cos(q3).

The lift-off event occurs when the trailing leg reaches its rest length L0 with
non-zero speed, since we do not allow the springs to pull.4

Momentum Variable Mapping

To complete the phase transitions, the momentum variables of the double support
phase need to be mapped to the momentum variables for the single support phase
and vice versa. This mapping also needs to ensure that the constraints on the
foot contact points are maintained. In particular, upon touchdown, the foot of
the former swing leg needs to be instantaneously constraint to fulfill the no-slip
condition. This can be realized by applying a momentum reset at the instant
of touchdown [16]. It was shown in our previous work that, despite the energy
loss associated with the impact, energy-efficient locomotion can be realized [70].
However, in this work, we will focus on the added benefit of the compliant legs,
and thus assume a compliant impact. This implies that, upon impact, the foot
mass mf will instantaneously dissipate its kinetic energy, while the hip mass mh

remains unaffected by the impact due to the compliant leg.
To map the momentum variables between the phases, we need to account for

the disappearing and reappearing of the foot mass. For this purpose, we define

3Essentially the swing leg is allowed to swing through the floor. This will be addressed in the
next model iteration in Section 11.5.

4To be accurate, the transition occurs when the foot starts to accelerate away from the floor.
However, this is practically equivalent to assuming that the transition occurs at the moment the
spring length becomes equal to its rest length and assuming that the leg instantly becomes rigid
at the same moment.
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new coordinates

z1 = (q1, q2, q3) and z2 = (q1, q2, ci),

where ci denotes the contact point that is subject to change due to the transition.
During both the touchdown and the lift-off event, the leg length is assumed to be
L0, so that we obtain

z2(z1) =




q1
q2

q1 − L0 cos(q3)



 .

We define the Jacobian matrix Z := ∂z2/∂z1 accordingly.
For the transition from single support to double support, using the subscripts

“old” and “new” for post- and pre-transition values, we have:

ż2,new = Zż1,old,

where ż1,old is defined by the momentum variables pold just before the phase tran-
sition:

ż1,old = S−1(q)M−1
ss pold,

with S(q) defined in (11.11) and Mss the mass matrix defined in (11.12). Note that
the expression for ċ2 is irrelevant in this phase transition, since we assume that
the foot is instantly constraint. The post-transition momentum variables for the
double support phase pnew are then given by

pnew = Mds

�
q̇1
q̇2

�

����
∈ż2,new

,

with Mds the mass matrix defined in (11.3).
Similarly, for the transition from double support to single support, we have

ż1,new = Z−1ż2,old,

where ż2,old is defined through the momentum variables pold just before the phase
transition:

ż2,old = M−1
ds pold,

with Mds the mass matrix defined in (11.3), and setting ċ1 = 0, since the foot is
stationary at the moment of lift-off. The post-transition momentum variables pnew
for the single support phase are then calculated as

pnew = MssS(q)ż1,new,

with S(q) defined in (11.11).
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11.4.3 Controller Design

During the double support phase, the model is equivalent to the V-SLIP model,
and therefore, during this phase, the control strategy proposed in Proposition 11.1
can be used. For the single support phase, the control strategy has to be extended
to regulate the swing leg trajectory q3(t). For this purpose, we define a reference
trajectory q∗3(t) as a polynomial:

q∗3(t) =
5�

i=0

ai(t− tlo)
i, tlo ≤ t < tlo + Tswing,

where Tswing is the desired swing time, e.g. obtained from the nominal single
support phase time of the SLIP model reference gait, and tlo is the time instant
of the last lift-off event. The coefficients ai are such that q∗3(t) is a minimum-jerk
trajectory with boundary conditions5




q∗3(tlo)
q̇∗3(tlo)
q̈∗3(tlo)



 =




q3(tlo)

0
0





and



q∗3(tlo + Tswing)
q̇∗3(tlo + Tswing)
q̈∗3(tlo + Tswing)



 =




π − α0

0
0



 .

In formulating the control strategy, we will define for both the double support
and single support phases a state vector of the form x = (q, p) and write the
respective differential equations (11.5) and (11.13) in the standard form (11.7).
The following control strategy is proposed, extending the V-SLIP control strategy
formulated in Proposition 11.1.

Proposition 11.2 Given reference state trajectories (q∗2 , q̇
∗
1 , q

∗
3), define the error

functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1,

h3 = q∗3 − q3.

During the double support phase, the corresponding control strategy formulated in
Proposition 11.1 renders solutions of (11.5) asymptotically converging to (q∗2 , q̇

∗
1).

During the single support phase, the following control strategy renders solutions
of (11.13) asymptotically converging to (q∗2 , q

∗
3):

�
u1

τ

�
= −A−1

�
L2
fh1 + κdLfh1 + κph1

L2
fh3 + κwLfh3 + κah3

�
, (11.14)

5The velocity q̇3(tlo) and the acceleration q̈3(tlo) are not matched by the reference trajectory
q∗3(t), because these quantities are in practice very difficult to measure accurately.
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with

A =

�
Lg1Lfh1 Lg2Lfh1

Lg1Lfh3 Lg2Lfh3

�
.

In particular, for suitable chosen constants κp,κd,κv,κa,κw > 0, the control strat-
egy (11.9), (11.10), (11.14) realizes, for some small ε1 > 0,

lim
t→∞

|q∗2(t)− q2(t)| < ε1,

and for some small ε2 > 0,

lim
t→∞

|q̇∗1(t)− q̇1(t)| < ε2,

and, during tlo ≤ t < tlo + Tswing, for some suitable δ > 0,

|q∗3(tlo + Tswing)− q3(tlo + Tswing)| < δ.

Proof: The control strategy is such that the system is strongly input-output
decoupled. Therefore, the dynamics of h1(t) are given by

ḧ1 + κdḣ1 + κph1 = e1,

where e1(t) is a disturbance due to the phase transitions. As a result, q2(t) is
continuous, but not differentiable. However, e1(t) is bounded and impulsive, and
therefore there exists constants κp,κd > 0 such that h2(t) converges to a neighbor-
hood ε1 of zero.

Similarly, the dynamics dynamics of h2(t) are given by

ḣ2 + κvh2 = e2,

where e2(t) is also a disturbance due to the phase transitions. As a result of
these disturbances, q̇1(t) is not continuous. However, since e2(t) is bounded and
impulsive, there exist a κv > 0 such that h2(t) converges to a neighborhood ε2 of
zero.

During the single support phase, the dynamics h3(t) are given by

ḧ3 + κwḣ3 + κah3 = 0.

For suitably chosen constant κa,κw > 0, such that the zero are in the open left
half-plane, the error function h3(t) converges to a neighborhood δ of zero in finite
time. �

The proposed control strategy has been validated through numeric simulations.
The same parameters were used as for the V-SLIP model as listed in Table 11.1,
and mf = 2.5 kg. Furthermore, κa = 1000 and κw = 40. It can be observed
that the error functions converge as claimed in Proposition 11.2. In particular, the
influence of the swing leg can be clearly observed when the plots are compared to
Fig. 11.4. Specifically, we can see the influence of the swing leg motion in the error
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where Tswing is the desired swing time, e.g. obtained from the
nominal single support phase time of the SLIP model reference
gait, and tlo is the time instant of the last lift-off event. The
coefficients ai are such that q∗3(t) is a minimum-jerk trajectory
with boundary conditions5
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0





and
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q̇∗3(tlo + Tswing)
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π − α0
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 .

In formulating the control strategy, we will define for both
the double support and single support phases a state vector
of the form x = (q, p) and write the respective differential
equations (5) and (13) in the standard form (7). The following
control strategy is proposed, extending the V-SLIP control
strategy formulated in Proposition 1.
Proposition 2: Given reference state trajectories

(q∗2 , q̇
∗
1 , q

∗
3), define the error functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1,

h3 = q∗3 − q3.

During the double support phase, the corresponding control
strategy formulated in Proposition 1 renders solutions of (5)
asymptotically converging to (q∗2 , q̇

∗
1).

During the single support phase, the following control
strategy renders solutions of (13) asymptotically converging
to (q∗2 , q

∗
3):
�
u1

τ

�
= −A−1

�
L2
fh1 + κdLfh1 + κph1

L2
fh3 + κwLfh3 + κah3

�
, (14)

with
A =

�
Lg1Lfh1 Lg2Lfh1

Lg1Lfh3 Lg2Lfh3

�
.

In particular, for suitable chosen constants
κp,κd,κv,κa,κw > 0, the control strategy (9), (10), (14)
realizes, for some small ε1 > 0,

lim
t→∞

|q∗2(t)− q2(t)| < ε1,

and for some small ε2 > 0,

lim
t→∞

|q̇∗1(t)− q̇1(t)| < ε2,

and, during tlo ≤ t < tlo + Tswing, for some suitable δ > 0,

|q∗3(tlo + Tswing)− q3(tlo + Tswing)| < δ.

Proof: The control strategy is such that the system is
strongly input-output decoupled. Therefore, the dynamics of
h1(t) are given by

ḧ1 + κdḣ1 + κph1 = e1,

5The velocity q̇3(tlo) and the acceleration q̈3(tlo) are not matched by
the reference trajectory q∗3(t), because these quantities are in practice very
difficult to measure accurately.
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Fig. 7. Steady-state error functions for the controlled V-SLIP model with
swing leg—It can be seen that the error functions converge like claimed in
Proposition 2. Note that h3 ≡ 0 during the double support phase.

where e1(t) is a disturbance due to the phase transitions. As
a result, q2(t) is continuous, but not differentiable. However,
e1(t) is bounded and impulsive, and therefore there exists con-
stants κp,κd > 0 such that h2(t) converges to a neighborhood
ε1 of zero.
Similarly, the dynamics dynamics of h2(t) are given by

ḣ2 + κvh2 = e2,

where e2(t) is also a disturbance due to the phase transitions.
As a result of these disturbances, q̇1(t) is not continuous.
However, since e2(t) is bounded and impulsive, there exist
a κv > 0 such that h2(t) converges to a neighborhood ε2 of
zero.
During the single support phase, the dynamics h3(t) are

given by
ḧ3 + κwḣ3 + κah3 = 0.

For suitably chosen constant κa,κw > 0, such that the zero are
in the open left half-plane, the error function h3(t) converges
to a neighborhood δ of zero in finite time.
The proposed control strategy has been validated through

numeric simulations. The same parameters were used as for
the V-SLIP model as listed in Table I, and mf = 2.5 kg.
Furthermore, κa = 1000 and κw = 40. It can be observed
that the error functions converge as claimed in Proposition 2.
In particular, the influence of the swing leg can be clearly
observed when the plots are compared to Fig. 4. Specifically,
we can see the influence of the swing leg motion in the
error function h1 at the onset of the single support phases
(the unshaded areas of the plot). The error function h2 also
shows a significant increase in amplitude during the swing.
We can also observe in h2 the lift-off of the swing leg in
the form of discontinuities at the moment of transition from
the double support phase (shaded areas) to the single support
phase (unshaded areas). The error function h3 shows that the

Figure 11.7: Steady-state error functions for the controlled V-SLIP model with swing leg—It can
be seen that the error functions converge like claimed in Proposition 11.2. Note that h3 ≡ 0
during the double support phase.

function h1 at the onset of the single support phases (the unshaded areas of the
plot). The error function h2 also shows a significant increase in amplitude during
the swing. We can also observe in h2 the lift-off of the swing leg in the form of
discontinuities at the moment of transition from the double support phase (shaded
areas) to the single support phase (unshaded areas). The error function h3 shows
that the swing leg motion is controlled as claimed by the proposed control law.
Note that the degree of freedom q3 is not defined during the double support phase,
and therefore h3 ≡ 0 during this phase.

11.5 The Controlled V-SLIP model with Retract-
ing Swing Leg Dynamics

In this Section, we further refine the model presented in Section 11.4 by adding a
knee, as shown in Fig. 11.8. This allows the swing leg to be retracted, so that it
can be swung forward without scuffing the ground. We derive in this Section the
dynamic equations for this model, and further extend the controller.
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Fig. 8. The V-SLIP model with feet and knees—By adding an actuated
knee joint to the model of Section IV, the leg can be retracted during the
single support phase. This allows the leg to swing forward without scuffing
the ground. It is assumed that no slip or bouncing occurs in the foot contact
point of the stance leg.

swing leg motion is controlled as claimed by the proposed
control law. Note that the degree of freedom q3 is not defined
during the double support phase, and therefore h3 ≡ 0 during
this phase.

V. THE CONTROLLED V-SLIP MODEL
WITH RETRACTING SWING LEG DYNAMICS

In this Section, we further refine the model presented in
Section IV by adding a knee, as shown in Fig. 8. This allows
the swing leg to be retracted, so that it can be swung forward
without scuffing the ground. We derive in this Section the
dynamic equations for this model, and further extend the
controller.

A. System Dynamics
Similar to the model presented in Section IV, we will

assume that:
• no slip or bouncing occurs in the foot contact points;
• the spring are unilateral.

These assumptions allow to again use the double support phase
model used in Section III-A.
To avoid notational clutter due to goniometric relations, the

simplified model depicted in Fig. 9 is used. The simplification
is possible, because the introduction of the knee joint intro-
duces only a kinematic relation between the hip mass and the
foot mass, since these are located at the extremities of the
swing leg.
In deriving the dynamic equations for the single support

phase of this model, we define new coordinates as

z1 = (q1, q2, q3, q4) and z2 = (q1, q2, s1, s2) (15)

where
s1 = q1 − q4 cos(q3),

s2 = q2 − q4 sin(q3),
(16)

i.e. the position of the foot of the swing leg. We furthermore
define the tangent map Z = ∂z2/∂z1. Using this relation and
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q 4
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τ1mh

mf

k0 + u1

c1

Fig. 9. Model simplification—The configuration of the swing leg can be
equivalently described by a linear degree of freedom q4, corresponding to the
distance between the hip and the foot, and the orientation q3, analogous to
the model of Fig. 5. During the double support phase, the model is reduced
to the V-SLIP model, as shown in Fig. 3.

noting that z1 = q and thus that ż2 = Zq̇, we can derive the
mass matrix M(q) from the energy equality

1
2 q̇

TM(q)q̇ = 1
2 ż

T
2 M0ż2 =

1
2 q̇

TZTM0Zq̇, (17)

with M0 = diag(mh,mh,mf ,mf ).
By defining the momentum variables p := M(q)q̇, the

kinetic energy K = 1
2p

TM−1(q)p, and the potential energy
function V is found to be:

V = mhg0q2 +mfg0(q2 − q4 sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function H = K + V and the
dynamic equations in port-Hamiltonian form are given by

d
dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�
∂H
∂q
∂H
∂p

�
,

(18)

where u = (u1, τ1, τ2), i.e. the controllable parts of the stance
leg stiffness, and the torques collocated with q3 and q4. The
input matrix B is given by

B =





∂φ1

∂q1
0 0

∂φ1

∂q2
0 0

0 1 0
0 0 1




,

with
φ1 = − 1

2 (L0 − L1)
2.

B. Phase Transitions

Just as in the model described in Section IV, also in this
model we need to consider the different sets of configuration
variables in the single and double support phases. Therefore,
in the following the phase transition mappings are defined.

Figure 11.8: The V-SLIP model with feet and knees—By adding an actuated knee joint to the
model of Section 11.4, the leg can be retracted during the single support phase. This allows the
leg to swing forward without scuffing the ground. It is assumed that no slip or bouncing occurs
in the foot contact point of the stance leg.

11.5.1 System Dynamics

Similar to the model presented in Section 11.4, we will assume that:

• no slip or bouncing occurs in the foot contact points;

• the spring are unilateral.

These assumptions allow to again use the double support phase model used in
Section 11.3.1.

To avoid notational clutter due to goniometric relations, the simplified model
depicted in Fig. 11.9 is used. The simplification is possible, because the introduction
of the knee joint introduces only a kinematic relation between the hip mass and
the foot mass, since these are located at the extremities of the swing leg.

In deriving the dynamic equations for the single support phase of this model,
we define new coordinates as

z1 = (q1, q2, q3, q4) and z2 = (q1, q2, s1, s2) (11.15)

where

s1 = q1 − q4 cos(q3),

s2 = q2 − q4 sin(q3),
(11.16)

i.e. the position of the foot of the swing leg. We furthermore define the tangent
map Z = ∂z2/∂z1. Using this relation and noting that z1 = q and thus that
ż2 = Zq̇, we can derive the mass matrix M(q) from the energy equality

1
2 q̇

TM(q)q̇ = 1
2 ż

T
2 M0ż2 = 1

2 q̇
TZTM0Zq̇, (11.17)
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Fig. 8. The V-SLIP model with feet and knees—By adding an actuated
knee joint to the model of Section IV, the leg can be retracted during the
single support phase. This allows the leg to swing forward without scuffing
the ground. It is assumed that no slip or bouncing occurs in the foot contact
point of the stance leg.

swing leg motion is controlled as claimed by the proposed
control law. Note that the degree of freedom q3 is not defined
during the double support phase, and therefore h3 ≡ 0 during
this phase.

V. THE CONTROLLED V-SLIP MODEL
WITH RETRACTING SWING LEG DYNAMICS

In this Section, we further refine the model presented in
Section IV by adding a knee, as shown in Fig. 8. This allows
the swing leg to be retracted, so that it can be swung forward
without scuffing the ground. We derive in this Section the
dynamic equations for this model, and further extend the
controller.

A. System Dynamics
Similar to the model presented in Section IV, we will

assume that:
• no slip or bouncing occurs in the foot contact points;
• the spring are unilateral.

These assumptions allow to again use the double support phase
model used in Section III-A.
To avoid notational clutter due to goniometric relations, the

simplified model depicted in Fig. 9 is used. The simplification
is possible, because the introduction of the knee joint intro-
duces only a kinematic relation between the hip mass and the
foot mass, since these are located at the extremities of the
swing leg.
In deriving the dynamic equations for the single support

phase of this model, we define new coordinates as

z1 = (q1, q2, q3, q4) and z2 = (q1, q2, s1, s2) (15)

where
s1 = q1 − q4 cos(q3),

s2 = q2 − q4 sin(q3),
(16)

i.e. the position of the foot of the swing leg. We furthermore
define the tangent map Z = ∂z2/∂z1. Using this relation and
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Fig. 9. Model simplification—The configuration of the swing leg can be
equivalently described by a linear degree of freedom q4, corresponding to the
distance between the hip and the foot, and the orientation q3, analogous to
the model of Fig. 5. During the double support phase, the model is reduced
to the V-SLIP model, as shown in Fig. 3.

noting that z1 = q and thus that ż2 = Zq̇, we can derive the
mass matrix M(q) from the energy equality

1
2 q̇

TM(q)q̇ = 1
2 ż

T
2 M0ż2 =

1
2 q̇

TZTM0Zq̇, (17)

with M0 = diag(mh,mh,mf ,mf ).
By defining the momentum variables p := M(q)q̇, the

kinetic energy K = 1
2p

TM−1(q)p, and the potential energy
function V is found to be:

V = mhg0q2 +mfg0(q2 − q4 sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function H = K + V and the
dynamic equations in port-Hamiltonian form are given by

d
dt

�
q
p

�
=

�
0 I
−I 0

� �∂H
∂q
∂H
∂p

�
+

�
0
B

�
u

y =
�
0 BT

�
�
∂H
∂q
∂H
∂p

�
,

(18)

where u = (u1, τ1, τ2), i.e. the controllable parts of the stance
leg stiffness, and the torques collocated with q3 and q4. The
input matrix B is given by

B =





∂φ1

∂q1
0 0

∂φ1

∂q2
0 0

0 1 0
0 0 1




,

with
φ1 = − 1

2 (L0 − L1)
2.

B. Phase Transitions

Just as in the model described in Section IV, also in this
model we need to consider the different sets of configuration
variables in the single and double support phases. Therefore,
in the following the phase transition mappings are defined.

Figure 11.9: Model simplification—The configuration of the swing leg can be equivalently de-
scribed by a linear degree of freedom q4, corresponding to the distance between the hip and the
foot, and the orientation q3, analogous to the model of Fig. 11.5. During the double support
phase, the model is reduced to the V-SLIP model, as shown in Fig. 11.3.

with M0 = diag(mh,mh,mf ,mf ).
By defining the momentum variables p := M(q)q̇, the kinetic energy K =

1
2p

TM−1(q)p, and the potential energy function V is found to be:

V = mhg0q2 +mfg0(q2 − q4 sin(q3)) +
1
2k0(L0 − L1)

2.

Then, the Hamiltonian energy function H = K + V and the dynamic equations in
port-Hamiltonian form are given by

d
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�
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(11.18)

where u = (u1, τ1, τ2), i.e. the controllable parts of the stance leg stiffness, and the
torques collocated with q3 and q4. The input matrix B is given by

B =





∂φ1

∂q1
0 0

∂φ1

∂q2
0 0

0 1 0
0 0 1




,

with
φ1 = − 1

2 (L0 − L1)
2.



146

11.5.2 Phase Transitions

Just as in the model described in Section 11.4, also in this model we need to consider
the different sets of configuration variables in the single and double support phases.
Therefore, in the following the phase transition mappings are defined.

Transition Conditions

The touchdown event occurs when the swing leg foot hits the ground, i.e. when,
using (11.16),

q2 = q4 sin(q3).

At this time instant, the new foot contact point c2 (see Fig. 11.3) is computed as

c2 = q1 − q4 cos(q3).

The lift-off event is defined the same as in Section 11.4.2, since both models are
reduced to the V-SLIP model during the double support phase.

Momentum variable mapping

Similarly to the approach taken in Section 11.4.2, we start from the new set of
coordinates defined in (11.15) and the corresponding Jacobian matrix Z. Thus, for
the transition from single support to double support:

ż2,new = Zż1,old,

where ż1,old is defined by the pre-transition momentum variables pold through

ż1,old = M−1
ss pold.

Here, Mss is the mass matrix defined in (11.17). As in Section 11.4.1, the post-
transition momentum variables for the double support phase pnew are given by

pnew = Mds

�
q̇1
q̇2

�

����
∈ż2,new

,

with Mds the mass matrix defined in (11.3).
For the transition from double support to single support, we again have

ż1,new = Z−1ż2,old,

where ż2,old is defined through the momentum variables pold just before the phase
transition:

ż2,old = M−1
ds pold,

with Mds the mass matrix defined in (11.3), and setting ṡ1 = ṡ2 = 0, since the foot
is stationary at the moment of lift-off. The post-transition momentum variables
pnew for the single support phase are then calculated as

pnew = Mssż1,new.
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11.5.3 Controller Design

During the double support phase, the control strategy proposed in Proposition 11.1
can again be used because of the model correspondence during this phase. For the
single support phase, the control strategy has to be extended with respect to the
control strategy presented in Proposition 11.2. In particular, in addition to the
control of the swing leg orientation, the swing leg length has to be regulated as
well. For this purpose, we define a reference trajectory q∗4(t) of the form

q∗4(t) = b0 + b1t+ b2t
2, tlo ≤ t ≤ tlo + Tswing.

The coefficients bi are such that the trajectory q∗4(t) satisfies the following condi-
tions: 


q∗4(tlo)

q∗4(tlo +
1
2Tswing)

q∗4(tlo + Tswing)



 =




q4(tlo)
L0 −∆

L0



 ,

with ∆ > 0 the amount of retraction of the swing leg. This trajectory ensures
that at the moment of lift-off the swing leg is immediately accelerating away from
the floor, reaching the maximum retraction during the predicted mid-stance. At
touchdown, the swing leg will have length L0, corresponding to the (V-)SLIP model.

Defining the state vector of the form x = (q, p) and writing (11.5) and (11.18)
in the standard form (11.7), the following control strategy is proposed, extending
the strategy formulated in Proposition 11.2.

Proposition 11.3 Given reference state trajectories (q∗2 , q̇
∗
1 , q

∗
3 , q

∗
4), define the er-

ror functions

h1 = q∗2 − q2,

h2 = q̇∗1 − q̇1,

h3 = q∗3 − q3,

h4 = q∗4 − q4.

During the double support phase, the corresponding control strategy formulated in
Proposition 11.1 renders solutions of (11.5) asymptotically converging to (q∗2 , q̇

∗
1).

During the single support phase, the following control strategy renders solutions
of (11.18) asymptotically converging to (q∗2 , q

∗
3 , q

∗
4):

�
u1

τ

�
= −A−1




L2
fh1 + κdLfh1 + κph1

L2
fh3 + κwLfh3 + κah3

L2
fh4 + κnLfh4 + κ�h4



 , (11.19)

with

A =




Lg1Lfh1 Lg2Lfh1 Lg3Lfh1

Lg1Lfh3 Lg2Lfh3 Lg3Lfh3

Lg1Lfh4 Lg2Lfh4 Lg3Lfh4



 .
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In particular, for suitable chosen constants κp,κd,κv,κa,κw,κ�,κn > 0, the control
strategy (11.9), (11.10), (11.19) realizes for some small ε1 > 0:

lim
t→∞

|q∗2(t)− q2(t)| < ε1,

and for some small ε2 > 0,

lim
t→∞

|q̇∗1(t)− q̇1(t)| < ε2,

and, during tlo ≤ t < tlo + Tswing, for some suitable δ1, δ2 > 0,

|q∗3(tlo + Tswing)− q3(tlo + Tswing)| < δ1

|q∗4(tlo + Tswing)− q4(tlo + Tswing)| < δ2

The proof is analogous to the proof given in Section 11.4.3 and is omitted
for brevity. The control strategy is validated through numeric simulations, with
the same model parameters as used in Section 11.4.3, and in addition κ� = 1000
and κn = 40, with a leg retraction ∆ = 7.5 cm. The resulting error function
plots are shown in Fig. 11.10, and it can be seen that they converge as claimed in
Proposition 11.3. The error functions show now significantly bigger influences of
the swing leg dynamics when compared to Fig. 11.7.

11.6 Comparison by Numerical Simulation

Starting from the bipedal SLIP model, three iterations of model refinement have
been presented in Section 11.3, Section 11.4, and Section 11.5. Also, in the first
iteration, a robust controller for leg stiffness has been presented in Section 11.3.2,
which has been extended in subsequent iterations. In this section, a comparison of
the performance of these controllers is presented.

11.6.1 Comparison of Gait Control

Fig. 11.11 shows the horizontal hip trajectory q1(t), and a detail of the correspond-
ing vertical hip trajectory q2(t). The most notable difference between the three
models is their average forward velocity, which is 1.18 m/s for the V-SLIP model,
but only 1.01 m/s and 0.64 m/s for the models including the swing leg dynamics
and the knee. Looking at the hip trajectories, it can be seen that this is due to
the inclusion of the swing leg dynamics, which introduces a lag in forward motion
with respect to the V-SLIP dynamics.

The leg stiffness trajectories ki = k0 + ui are shown in Fig. 11.12. Since the
reference trajectory is the natural gait of the bipedal SLIP model, it is not surpris-
ing that the V-SLIP model requires very little control action to track the reference.
The small amount that is required is due to the small mismatch between the pa-
rameterized reference trajectory and the true dynamics, as pointed out already in
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Section 11.3.2. The introduction of the swing leg dynamics introduces a significant
disturbance to the V-SLIP dynamics, exemplified by the larger magnitude of the
control inputs. It is interesting to note that the V-SLIP model with swing leg, as
introduced in Section 11.4, requires an impulse-like control input during the single
support phase to counter the acceleration and deceleration of the swing leg. In
contrast, including the leg retraction (Section 11.5) results in a smaller moment
of inertia, resulting in a smoother control. However, it is noted that the swing
leg retraction does result in larger deceleration of the hip, which manifests itself
in larger control inputs during the double support phase (bottom plot), actually
reaching the lower bound of zero leg stiffness k2 = k0+u2 for short periods of time.

11.6.2 Energy Balance

We claim that the proposed control strategies are energy efficient. To investigate
this claim, the energy balance of the model is instrumental. First, it is noted that
the natural gait of the bipedal SLIP model is associated to a constant energy level
[21, 44]. Since the V-SLIP model presented in Section 11.3 matches the bipedal
SLIP model, its energy balance is the same if the reference trajectory for the V-
SLIP controller exactly matches the solutions of (11.4). However, as already noted
before, the solutions of (11.4) are not analytical, and therefore a small mismatch
between the natural dynamics of the V-SLIP model and the reference is inevitable,
resulting in small control action even in nominal conditions, as shown in Fig. 11.12.

The energy balance for the model including the swing leg (Section 11.4) is
presented in Fig. 11.13. It can be seen that the introduction of the swing leg
dynamics introduces a significant deviation of the constant energy level of the
bipedal SLIP model, indicated by the dashed line. The bulges in the kinetic energy
plot clearly show the accelerating and the decelerating of the swing leg.

The energy balance for the swing leg model with leg retraction (Section 11.5) is
shown in Fig. 11.14. It clearly shows that the leg retraction further slows down the
system, as exemplified by the lower total energy level when compared to Fig. 11.13.
However, it is also noted that the bulges observed in Fig. 11.13 have been reduced
in amplitude in Fig. 11.14. This is because the leg retraction results in a lower
swing leg inertia, mitigating the influence of the swing of the leg.

Both Fig. 11.13 and Fig. 11.14 show relatively small variations in the total
energy level. Intuitively, this could be interpreted as energy-efficient, as it signifies
that only small amounts of energy are exchanged with the environment and via the
control action.

11.6.3 Cost of Transport

Cost of transport (also known as specific resistance) is a measure of energy ef-
ficiency, as it measures the energy that a system uses to travel a specified dis-
tance [23, 30]. Using the definition proposed in [30], the cost of transport is ob-
tained by exploiting the port-Hamiltonian formulation of the dynamic equations
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(11.5), (11.13), (11.18):

C =
1

mtotalg0∆x

�

T
|�u|y�| dt, (11.20)

where mtotal denotes the total mass and ∆x the distance traveled during the time
T . The cost C captures the amount of energy required for walking the distance
∆x, taking into account that, in general, actuators dissipate energy when negative
work is done, rather than storing it.

Using (11.20), we find C = 3 · 10−3 for the controlled V-SLIP model. The
cost is not exactly zero due to the aforementioned mismatch between the reference
trajectory and the true natural dynamics: if the reference had been exact, we would
have C ≡ 0. For the model with swing leg (Section 11.4), we obtain C = 0.32.
For the model with the retracting swing leg (Section 11.5), we obtain C = 0.34.
While Fig. 11.14 hinted to lower energy expenditure when compared to Fig. 11.13,
this gain in efficiency is offset by the lower average velocity. The cost of transport
C = 0.34 is in the same range as of human walking [23], and thus the proposed
control strategy can be considered energy efficient in the sense that it is shown that
the theoretical performance approaches that of human walking.

11.7 Conclusions

In this paper, we presented a constructive method for designing a control strategy
for a bipedal walker. The starting point was the bipedal spring-loaded inverted
pendulum model, extended by variable leg stiffness to provide control inputs. Sub-
sequent modeling iterations extended the model to include full swing leg dynamics,
while at the same time the control strategy was extended to handle the refined
models. The final result is a template model of a bipedal walker, based on the
principles of the bipedal spring-loaded inverted pendulum, and an energy-efficient
controller with a performance level comparable to human walking. This model plus
controller can serve as the basis for control of bipedal robots.
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Fig. 10. Steady-state error functions for the controlled V-SLIP model with
leg retraction—It can be seen that the error functions converge like claimed
in Proposition 3. Note that h3 ≡ 0 and h4 ≡ 0 during the double support
phase.

VI. COMPARISON BY NUMERICAL SIMULATION
Starting from the bipedal SLIP model, three iterations of

model refinement have been presented in Section III, Sec-
tion IV, and Section V. Also, in the first iteration, a robust
controller for leg stiffness has been presented in Section III-B,
which has been extended in subsequent iterations. In this
section, a comparison of the performance of these controllers
is presented.

A. Comparison of Gait Control
Fig. 11 shows the horizontal hip trajectory q1(t), and a detail

of the corresponding vertical hip trajectory q2(t). The most
notable difference between the three models is their average
forward velocity, which is 1.18 m/s for the V-SLIP model, but
only 1.01 m/s and 0.64 m/s for the models including the swing
leg dynamics and the knee. Looking at the hip trajectories, it
can be seen that this is due to the inclusion of the swing
leg dynamics, which introduces a lag in forward motion with
respect to the V-SLIP dynamics.
The leg stiffness trajectories ki = k0 + ui are shown

in Fig. 12. Since the reference trajectory is the natural gait
of the bipedal SLIP model, it is not surprising that the V-
SLIP model requires very little control action to track the
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and retracting the leg has a negative influence on the forward velocity. This
influence is particularly apparent in the vertical hip position trajectories.
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Fig. 12. Control inputs—See Fig. 11 for the legend. The controlled V-SLIP
model hardly requires any control input to track the reference, which is by
design of the control strategy. Adding the swing leg and retracting introduces
a significant disturbance in the dynamics, and thus more control input. Note
that u2 ≡ 0 during the single support phase.

reference. The small amount that is required is due to the small
mismatch between the parameterized reference trajectory and
the true dynamics, as pointed out already in Section III-B. The
introduction of the swing leg dynamics introduces a significant
disturbance to the V-SLIP dynamics, exemplified by the larger
magnitude of the control inputs. It is interesting to note that
the V-SLIP model with swing leg, as introduced in Section IV,
requires an impulse-like control input during the single support
phase to counter the acceleration and deceleration of the swing
leg. In contrast, including the leg retraction (Section V) results
in a smaller moment of inertia, resulting in a smoother control.
However, it is noted that the swing leg retraction does result
in larger deceleration of the hip, which manifests itself in
larger control inputs during the double support phase (bottom
plot), actually reaching the lower bound of zero leg stiffness
k2 = k0 + u2 for short periods of time.

B. Energy Balance
We claim that the proposed control strategies are energy

efficient. To investigate this claim, the energy balance of the
model is instrumental. First, it is noted that the natural gait
of the bipedal SLIP model is associated to a constant energy
level [4], [5]. Since the V-SLIP model presented in Section III

Figure 11.10: Steady-state error functions for the controlled V-SLIP model with leg retraction—It
can be seen that the error functions converge like claimed in Proposition 11.3. Note that h3 ≡ 0
and h4 ≡ 0 during the double support phase.
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VI. COMPARISON BY NUMERICAL SIMULATION
Starting from the bipedal SLIP model, three iterations of

model refinement have been presented in Section III, Sec-
tion IV, and Section V. Also, in the first iteration, a robust
controller for leg stiffness has been presented in Section III-B,
which has been extended in subsequent iterations. In this
section, a comparison of the performance of these controllers
is presented.

A. Comparison of Gait Control
Fig. 11 shows the horizontal hip trajectory q1(t), and a detail

of the corresponding vertical hip trajectory q2(t). The most
notable difference between the three models is their average
forward velocity, which is 1.18 m/s for the V-SLIP model, but
only 1.01 m/s and 0.64 m/s for the models including the swing
leg dynamics and the knee. Looking at the hip trajectories, it
can be seen that this is due to the inclusion of the swing
leg dynamics, which introduces a lag in forward motion with
respect to the V-SLIP dynamics.
The leg stiffness trajectories ki = k0 + ui are shown

in Fig. 12. Since the reference trajectory is the natural gait
of the bipedal SLIP model, it is not surprising that the V-
SLIP model requires very little control action to track the
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model hardly requires any control input to track the reference, which is by
design of the control strategy. Adding the swing leg and retracting introduces
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that u2 ≡ 0 during the single support phase.

reference. The small amount that is required is due to the small
mismatch between the parameterized reference trajectory and
the true dynamics, as pointed out already in Section III-B. The
introduction of the swing leg dynamics introduces a significant
disturbance to the V-SLIP dynamics, exemplified by the larger
magnitude of the control inputs. It is interesting to note that
the V-SLIP model with swing leg, as introduced in Section IV,
requires an impulse-like control input during the single support
phase to counter the acceleration and deceleration of the swing
leg. In contrast, including the leg retraction (Section V) results
in a smaller moment of inertia, resulting in a smoother control.
However, it is noted that the swing leg retraction does result
in larger deceleration of the hip, which manifests itself in
larger control inputs during the double support phase (bottom
plot), actually reaching the lower bound of zero leg stiffness
k2 = k0 + u2 for short periods of time.

B. Energy Balance
We claim that the proposed control strategies are energy

efficient. To investigate this claim, the energy balance of the
model is instrumental. First, it is noted that the natural gait
of the bipedal SLIP model is associated to a constant energy
level [4], [5]. Since the V-SLIP model presented in Section III

Figure 11.11: Hip trajectories q1(t) and q2(t)—It can be observed that swinging and retracting
the leg has a negative influence on the forward velocity. This influence is particularly apparent
in the vertical hip position trajectories.
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VI. COMPARISON BY NUMERICAL SIMULATION
Starting from the bipedal SLIP model, three iterations of

model refinement have been presented in Section III, Sec-
tion IV, and Section V. Also, in the first iteration, a robust
controller for leg stiffness has been presented in Section III-B,
which has been extended in subsequent iterations. In this
section, a comparison of the performance of these controllers
is presented.

A. Comparison of Gait Control
Fig. 11 shows the horizontal hip trajectory q1(t), and a detail

of the corresponding vertical hip trajectory q2(t). The most
notable difference between the three models is their average
forward velocity, which is 1.18 m/s for the V-SLIP model, but
only 1.01 m/s and 0.64 m/s for the models including the swing
leg dynamics and the knee. Looking at the hip trajectories, it
can be seen that this is due to the inclusion of the swing
leg dynamics, which introduces a lag in forward motion with
respect to the V-SLIP dynamics.
The leg stiffness trajectories ki = k0 + ui are shown

in Fig. 12. Since the reference trajectory is the natural gait
of the bipedal SLIP model, it is not surprising that the V-
SLIP model requires very little control action to track the
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model hardly requires any control input to track the reference, which is by
design of the control strategy. Adding the swing leg and retracting introduces
a significant disturbance in the dynamics, and thus more control input. Note
that u2 ≡ 0 during the single support phase.

reference. The small amount that is required is due to the small
mismatch between the parameterized reference trajectory and
the true dynamics, as pointed out already in Section III-B. The
introduction of the swing leg dynamics introduces a significant
disturbance to the V-SLIP dynamics, exemplified by the larger
magnitude of the control inputs. It is interesting to note that
the V-SLIP model with swing leg, as introduced in Section IV,
requires an impulse-like control input during the single support
phase to counter the acceleration and deceleration of the swing
leg. In contrast, including the leg retraction (Section V) results
in a smaller moment of inertia, resulting in a smoother control.
However, it is noted that the swing leg retraction does result
in larger deceleration of the hip, which manifests itself in
larger control inputs during the double support phase (bottom
plot), actually reaching the lower bound of zero leg stiffness
k2 = k0 + u2 for short periods of time.

B. Energy Balance
We claim that the proposed control strategies are energy

efficient. To investigate this claim, the energy balance of the
model is instrumental. First, it is noted that the natural gait
of the bipedal SLIP model is associated to a constant energy
level [4], [5]. Since the V-SLIP model presented in Section III

Figure 11.12: Control inputs—See Fig. 11.11 for the legend. The controlled V-SLIP model hardly
requires any control input to track the reference, which is by design of the control strategy. Adding
the swing leg and retracting introduces a significant disturbance in the dynamics, and thus more
control input. Note that u2 ≡ 0 during the single support phase.
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Fig. 13. Energy balance for the controlled V-SLIP model with swing leg—
The dashed line indicates the constant energy level of the bipedal SLIP model.
The influence of the swing leg is clearly seen in the bulges in the kinetic
energy.
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Fig. 14. Energy balance for the controlled V-SLIP model with leg
retraction—The dashed line indicates the constant energy level of the bipedal
SLIP model. Also here the influence of swinging and retracting the swing leg
is clearly seen.

matches the bipedal SLIP model, its energy balance is the same
if the reference trajectory for the V-SLIP controller exactly
matches the solutions of (4). However, as already noted before,
the solutions of (4) are not analytical, and therefore a small
mismatch between the natural dynamics of the V-SLIP model
and the reference is inevitable, resulting in small control action
even in nominal conditions, as shown in Fig. 12.
The energy balance for the model including the swing leg

(Section IV) is presented in Fig. 13. It can be seen that the
introduction of the swing leg dynamics introduces a significant
deviation of the constant energy level of the bipedal SLIP
model, indicated by the dashed line. The bulges in the kinetic
energy plot clearly show the accelerating and the decelerating
of the swing leg.
The energy balance for the swing leg model with leg

retraction (Section V) is shown in Fig. 14. It clearly shows
that the leg retraction further slows down the system, as
exemplified by the lower total energy level when compared
to Fig. 13. However, it is also noted that the bulges observed
in Fig. 13 have been reduced in amplitude in Fig. 14. This is
because the leg retraction results in a lower swing leg inertia,
mitigating the influence of the swing of the leg.
Both Fig. 13 and Fig. 14 show relatively small variations

in the total energy level. Intuitively, this could be interpreted
as energy-efficient, as it signifies that only small amounts of

energy are exchanged with the environment and via the control
action.

C. Cost of Transport
Cost of transport (also known as specific resistance) is a

measure of energy efficiency, as it measures the energy that a
system uses to travel a specified distance [20], [21]. Using the
definition proposed in [21], the cost of transport is obtained
by exploiting the port-Hamiltonian formulation of the dynamic
equations (5), (13), (18):

C =
1

mtotalg0∆x

�

T
|�u|y�| dt, (20)

where mtotal denotes the total mass and ∆x the distance
traveled during the time T . The cost C captures the amount
of energy required for walking the distance ∆x, taking into
account that, in general, actuators dissipate energy when
negative work is done, rather than storing it.
Using (20), we find C = 3 ·10−3 for the controlled V-SLIP

model. The cost is not exactly zero due to the aforementioned
mismatch between the reference trajectory and the true natural
dynamics: if the reference had been exact, we would have
C ≡ 0. For the model with swing leg (Section IV), we
obtain C = 0.32. For the model with the retracting swing
leg (Section V), we obtain C = 0.34. While Fig. 14 hinted
to lower energy expenditure when compared to Fig. 13, this
gain in efficiency is offset by the lower average velocity. The
cost of transport C = 0.34 is in the same range as of human
walking [20], and thus the proposed control strategy can be
considered energy efficient in the sense that it is shown that the
theoretical performance approaches that of human walking.

VII. CONCLUSIONS

In this paper, we presented a constructive method for
designing a control strategy for a bipedal walker. The starting
point was the bipedal spring-loaded inverted pendulum model,
extended by variable leg stiffness to provide control inputs.
Subsequent modeling iterations extended the model to include
full swing leg dynamics, while at the same time the control
strategy was extended to handle the refined models. The final
result is a template model of a bipedal walker, based on the
principles of the bipedal spring-loaded inverted pendulum,
and an energy-efficient controller with a performance level
comparable to human walking. This model plus controller can
serve as the basis for control of bipedal robots.
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matches the bipedal SLIP model, its energy balance is the same
if the reference trajectory for the V-SLIP controller exactly
matches the solutions of (4). However, as already noted before,
the solutions of (4) are not analytical, and therefore a small
mismatch between the natural dynamics of the V-SLIP model
and the reference is inevitable, resulting in small control action
even in nominal conditions, as shown in Fig. 12.
The energy balance for the model including the swing leg

(Section IV) is presented in Fig. 13. It can be seen that the
introduction of the swing leg dynamics introduces a significant
deviation of the constant energy level of the bipedal SLIP
model, indicated by the dashed line. The bulges in the kinetic
energy plot clearly show the accelerating and the decelerating
of the swing leg.
The energy balance for the swing leg model with leg

retraction (Section V) is shown in Fig. 14. It clearly shows
that the leg retraction further slows down the system, as
exemplified by the lower total energy level when compared
to Fig. 13. However, it is also noted that the bulges observed
in Fig. 13 have been reduced in amplitude in Fig. 14. This is
because the leg retraction results in a lower swing leg inertia,
mitigating the influence of the swing of the leg.
Both Fig. 13 and Fig. 14 show relatively small variations

in the total energy level. Intuitively, this could be interpreted
as energy-efficient, as it signifies that only small amounts of

energy are exchanged with the environment and via the control
action.

C. Cost of Transport
Cost of transport (also known as specific resistance) is a

measure of energy efficiency, as it measures the energy that a
system uses to travel a specified distance [20], [21]. Using the
definition proposed in [21], the cost of transport is obtained
by exploiting the port-Hamiltonian formulation of the dynamic
equations (5), (13), (18):

C =
1

mtotalg0∆x

�

T
|�u|y�| dt, (20)

where mtotal denotes the total mass and ∆x the distance
traveled during the time T . The cost C captures the amount
of energy required for walking the distance ∆x, taking into
account that, in general, actuators dissipate energy when
negative work is done, rather than storing it.
Using (20), we find C = 3 ·10−3 for the controlled V-SLIP

model. The cost is not exactly zero due to the aforementioned
mismatch between the reference trajectory and the true natural
dynamics: if the reference had been exact, we would have
C ≡ 0. For the model with swing leg (Section IV), we
obtain C = 0.32. For the model with the retracting swing
leg (Section V), we obtain C = 0.34. While Fig. 14 hinted
to lower energy expenditure when compared to Fig. 13, this
gain in efficiency is offset by the lower average velocity. The
cost of transport C = 0.34 is in the same range as of human
walking [20], and thus the proposed control strategy can be
considered energy efficient in the sense that it is shown that the
theoretical performance approaches that of human walking.

VII. CONCLUSIONS

In this paper, we presented a constructive method for
designing a control strategy for a bipedal walker. The starting
point was the bipedal spring-loaded inverted pendulum model,
extended by variable leg stiffness to provide control inputs.
Subsequent modeling iterations extended the model to include
full swing leg dynamics, while at the same time the control
strategy was extended to handle the refined models. The final
result is a template model of a bipedal walker, based on the
principles of the bipedal spring-loaded inverted pendulum,
and an energy-efficient controller with a performance level
comparable to human walking. This model plus controller can
serve as the basis for control of bipedal robots.
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A.1 Introduction

The human musculoskeletal system enables highly energy-efficient and robust walk-
ing. However, walking machines are not yet close to achieving similar performance
with the same level of robustness. In particular, robotic walkers are either energy-
efficient, such as passive dynamic walkers [41, 11], or robust, such as PETMAN [6].
In order to be able to build robotic walkers that can come close to human perfor-
mance levels, a better understanding of human walking is needed.

Human-like walking can be modeled by bipedal Spring-Loaded Inverted Pendu-
lum (SLIP) model, which reproduces, to a large extent, the human hip motion and
ground reaction forces observed in human gaits [21]. As shown in [44], the stiffness
of the legs not only influences the type of gait, but also robustness against exter-
nal disturbances. This property inspired the introduction of the bipedal Variable
Spring-Loaded Inverted Pendulum (V-SLIP) model, in which the leg stiffness can
be continuously varied [69]. It was shown that a controller exists that, by active
variation of the leg stiffness, renders an arbitrary gait asymptotically stable, thus
further improving the robustness.
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Table A.1: Properties of model abstraction levels

Model Abstraction Legs Mass distribution

V-SLIP high telescopic linear
springs

point mass at hip

V-SLIP with
knees

middle segmented legs,
compliant knee

realistic inertias of up-
per and lower leg

Robot model low segmented legs,
VSA in knee

realistic inertias of up-
per and lower leg

The main shortcoming of the bipedal SLIP and V-SLIP models is that they are
purely conceptual. In particular, any robotic walker will be influenced by swing leg
dynamics and energy losses due to foot impacts, which have not been incorporated
in these models. In [20], it was shown that it is possible to use the passive gait of
the bipedal SLIP model onto a fully actuated bipedal robot model by projecting
the bipedal SLIP dynamics onto the robot dynamics. In [70], it was shown that
the control strategy developed for the V-SLIP model can be extended to handle
the swing leg dynamics.

In this work we present a control strategy for a bipedal robot, actuated by
variable stiffness actuators (VSAs), a class of actuators that allow the actuator
output position and stiffness to be controlled independently. With these actuators,
the robot realizes controllable leg compliance, so that it closely matches the bipedal
V-SLIP model. The control strategy is implemented using different abstraction
levels for a bipedal robot model. At the highest abstraction level the model is the
bipedal V-SLIP model, as presented in [69]. One level below, the model features
variable compliant elements in the knees and non-massless leg elements. At the
lowest abstraction level, physical elements are considered, such as the models of
the motors and the VSAs. Table A.1 lists the three different model abstraction
levels and their features. The effectiveness of the control strategy is demonstrated
by numeric simulation and experiments performed on the robot.

This paper is organized as follows. Section A.2, Section A.3, and Section A.4
describe the models listed in Table A.1 and present control strategies for gait control
at that particular level of abstraction. Section A.5 presents the integrated control
strategy, and in Section A.6 numeric simulation results are presented, validating the
controller design. Preliminary experimental results are presented in Section A.7.
Section A.8 concludes the paper with final remarks.

A.2 V-SLIP Model and Controller

This Section covers both the model and the controller design for the highest ab-
straction level considered in this work, i.e., the V-SLIP model, as proposed in our
previous work [69] and illustrated in Fig. A.1.
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Figure A.1: The V-SLIP model—The model consists of a point mass m, and two massless tele-
scopic springs with controllable stiffness k0 + ui, i = 1, 2 and rest length L0. A walking gait is a
periodic hip trajectory (x(t), y(t)).

A.2.1 Model Description

The V-SLIP model consists of a point mass m located at the hip and two massless
telescopic linear springs with rest length L0 and variable stiffness k0 + ui. The
system is restricted to the sagittal plane, so that the hip position is described by
the planar coordinates (x, y). The control inputs to the V-SLIP model are the
stiffness variation u1 and u2.

The dynamics of the V-SLIP model are described by [69]

�
m 0
0 m

� �
ẍ
ÿ

�
+

�
0

mg0

�
− Fs0(x, y) = Fsu(x, y),

where g0 is the gravitational acceleration, Fs0 the force exerted by the springs on
the mass due to the nominal spring stiffness k0, and Fsu the force exerted on the
mass due to the control inputs ui.

The dynamics of the V-SLIP model are hybrid in nature, due to the foot lift-
off and touchdown events throughout the walking gait. In particular, we consider
three specific domains. When both feet are in contact with the ground, the biped
is said to be in the double support phase and both control inputs can then be used
to control the hip motion of the biped. When only one foot is in contact with the
ground, the biped is said to be in the single support phase, during which only one
control input can be used to control the hip motion. Furthermore, it might happen
that a flight phase occurs, when both feet lose contact with the ground.

A.2.2 Control Strategy

A control strategy for the bipedal V-SLIP model, which renders its dynamics
asymptotically converging to an arbitrary gait of the bipedal SLIP model, has
been proposed in [69]. The reference gait is obtained from the bipedal SLIP model
with a nominal leg stiffness k0 and spring rest length L0 [21]. Because the hor-
izontal position of the hip x is a monotonically increasing variable, it is possible
to parameterize a specific gait by this variable. The reference gait can then be
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fully described by the hip height y(x) and the forward hip velocity ẋ(x). These
two variables are chosen as a reference because they are a measure for a part of
the amount of energy associated with the gait, potential energy and kinetic energy
respectively. The control objective is then formulated as follows:

Problem A.1 Given a parameterized reference gait as (y∗(x), ẋ∗(x)), find control
inputs u1 and u2, such that

lim
t→∞

y∗(x(t))− y(t) = 0,

and, for some small ε > 0,

lim
t→∞

|ẋ∗(x(t))− ẋ(t)| < ε,

i.e., such that the trajectory (x(t), y(t)) approaches the reference gait asymptoti-
cally, with bounded error in the desired forward velocity.

From the error in the hip height and the error in the forward velocity, the V-
SLIP controller derives the change in leg stiffness u1 and u2, which is added to
the nominal stiffness k0 to obtain the total leg stiffness. During the single support
phase, the controller only derives one control input, since there is only one leg
touching the ground, and the swing leg is not considered in the V-SLIP model.
During the double support phase, the controller calculates control inputs for both
legs. Given the leg stiffness, the force Fi, i = 1, 2 that is applied along the legs of
the V-SLIP model is then:

Fi = (k0 + ui) (Li − L0) , i = 1, 2, (A.1)

where Li is the leg length.

A.3 V-SLIP Model with Knees and Controller

The model described in Section A.2 is purely conceptual, since the legs are massless
and the swing leg is completely ignored. In order to go to a realistic model of a
bipedal robot, this Section describes a model with a lower level of abstraction, i.e.
the V-SLIP model with knees, and extends the control strategy.

A.3.1 Model Description

The V-SLIP with knees model is shown in black in Fig. A.2, overlapped to the
V-SLIP model in gray. The V-SLIP model with knees consists of four rigid bodies:
an upper and lower leg for each leg. For each body the center of mass is indicated,
labeled as mul and mll. It is assumed that the masses of the upper legs are larger
than the lower legs, with a total mass distribution such that the center of mass is
close to the hip joint, aimed to closely approach the point mass distribution of the
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Figure A.2: The V-SLIP model with knees—The model features variable stiffness knee joints and
its mass distribution is such that it approaches that of the V-SLIP model, depicted in gray.

V-SLIP model. The bodies are connected by means of three joints: the upper legs
by the hip joint, and each pair of upper and lower leg by a knee joint.

From Fig. A.2 it is observed that the virtual spring legs of the V-SLIP model
(shown in gray) are realized by a segmented leg configuration, where the upper and
lower leg are connected by torsion springs with variable stiffness. The knee angles
are denoted by θi, i = 1, 2 and the angle between the two upper legs, i.e., the hip
angle, as ϕ.

A.3.2 Stance Leg Control

In order to implement the control strategy proposed for the V-SLIP model, a
mapping is required between the telescopic springs of the V-SLIP model and the
segmented legs of the kneed model, if these are in contact with the ground. In
particular, the forces derived in (A.1) need to be realized by appropriate variations
of the torsional knee stiffness, as function of the knee angle θi.

The conversion is visualized in Fig. A.3. The moment arm a, which defines the
relation between the translational and rotational domain (τ = a · F ), is equal to
the shortest distance between the knee joint and the virtual leg. It can be easily
shown that this distance is equal to

a =
l1l2
Li

sin(θi),

where l1 and l2 are the lengths of upper and lower leg. The singularity θi = π is
to be avoided by an end-stop.
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Figure A.3: Visualization of the mapping of the V-SLIP model—The behavior of the telescopic
legs of the V-SLIP model is implemented by the variable stiffness springs in the knee joints.

A.3.3 Swing Leg Control

The motion of the swing leg in the single support phase is governed by a motion
profile generator. The generator computes reference trajectories for the hip and
knee joint, based on a estimation of the swing duration. The motions are designed
such that the swing leg is first retracted, then swung forward, and then extended
again for touchdown. To achieve the desired motion of the knee joint, the stiffness
of the knee joints are controlled to have high stiffness for accurate motion tracking,
but a lower stiffness just before the predicted moment of touchdown to absorb the
impact force.

A.4 Robot Model and Controller

This Section describes a third and final model refinement of a bipedal robot, incor-
porating variable stiffness actuators, and the corresponding extension of the control
strategy.

A.4.1 Model Description

The robot model is based on CAD drawings of the real robot and implemented using
the 3D Mechanics Toolbox of the 20-sim software package(Controllab Products
B.V., Enschede, The Netherlands). A visual representation of the model is depicted
in Fig. A.4. It includes full 3D dynamics, ground contact models, and actuator
dynamics. The sideways motion of the robot is constrained by a guide rail in order
to keep the motion in the sagittal plane.

The required variable leg compliance of the biped model is implemented by
means of variable stiffness actuators in the knees. This class of actuators are
characterized by the property that they can change the output position and stiffness
independently. By using these actuators in the knee joints of the robot, the variable
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Figure A.4: Visual representation of the robot model—The model is implemented using the CAD
drawings of the robot design, and includes full 3D dynamics and ground contact models.

leg stiffness behavior of the bipedal V-SLIP model can be reproduced. In this work,
the vsaUT-II [26] variable stiffness actuator is used. This actuator uses the concept
of a lever with a moving pivot to vary the apparent output stiffness. Considering
two springs with a fixed stiffness k and a lever length d, the apparent output
stiffness K is given by:

K(q1) =
∂τ

∂θi
=

�
q1

d− q1

�2

· 2 · k,

where q1 is the position of the pivot. This method enables to realize an output
stiffness in the range of zero stiffness (q1 = 0) and infinite stiffness (q1 = d).

Besides q1, the vsaUT-II has a second degree of freedom, i.e., q2, which defines
the equilibrium position of the output. The torque delivered by the actuator at
the output is a function of the state of the internal springs, the output position θi,
and the two degrees of freedom q1 and q2.

A.4.2 VSA Control

The V-SLIP model with knees assumes an ideal variable compliant knee element
and, therefore, the control of the VSA needs to be added to the previously presented
controller. In particular, in Section A.3 a required knee torque τd, together with a
desired knee stiffness Kd, has been derived. These two quantities are the inputs to
the VSA controller that calculates the required motion for the degrees of freedom
q1 and q2 of the actuator.

The VSA controller is based on the controller presented in [65]. Given the
desired knee torque τd, and given the exerted torque τ from the vsaUT-II model
[26], we define a desired rate of change

τ̇d = κp(τd − τ),
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for some κp > 0. The rate of change of the output torque delivered by the VSA
can be shown to be of the form

τ̇ = Vq

�
q̇1
q̇2

�
+ Vθ θ̇i, (A.2)

where the matrix function Vq and the scalar function Vθ follow from the actuator
kinematics, and θ̇i is the rate of change of the output angle of the actuator.

In order to find the required (q̇1, q̇2) to realize τ̇d, (A.2) needs to be inverted.
However, Vq is not square, causing the problem to be under-constrained. To resolve
the redundancy, [65] proposes to use a weighted pseudo inverse of the form

V �
q = M−1V T

�
VM−1V T

�−1
, (A.3)

with M given by

M =

�
w1 0
0 w2

�
.

Here w1 and w2 are functions of q1 and q2, respectively. The purpose of the
weighting functions wi is to control the ratio between q̇1 and q̇2, and are constructed
to appoint near-infinite weight to a degree of freedom approaching its extremal
positions. In the vsaUT-II, the motor controlling q1 is much smaller than the
motor controlling q2, and therefore the former is given a higher weight to prevent
overloading of the motor.

Given the pseudo inverse (A.3), (A.2) can be inverted, yielding

q̇ = V �
q

�
τ̇d − Vθ θ̇i

�
+ g(Kd),

where the function g(Kd) is a special function that regulates the VSA output stiff-
ness K to the torsional equivalent Kd of k0 in the null-space of Vq, i.e. it attempts
to keep the virtual leg stiffness close to k0 without interfering with effectuation of
τd (see [65] for details).

A.5 Integrated Control Architecture

The previous Sections have covered three iteration steps of modeling and control
a bipedal robot. The three controllers form a complete controller for the robot
model, as shown in Fig. A.5. The V-SLIP controller, shown on the left, maps the
robot state on the V-SLIP model and calculates leg stiffness variations for the V-
SLIP model. Then, in a second layer, these stiffness variations are mapped onto the
knees of the bipedal model and along with this control, trajectories for the swing
leg and hip trajectory are calculated. At the next level, the VSA control maps the
desired knee torques during stance onto the individual degrees of freedom of the
vsaUT-II. After this, a switching block selects the correct control inputs for the
different joints, i.e. stiffness control during the stance phase and motion control
during the swing phase. The low-level I/O block computes the required motor
currents in order to achieve the desired torques or motions.
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Figure A.5: Multi-layer control architecture—The first layer maps the robot state onto the V-
SLIP model. The resulting control action are then mapped to the V-SLIP model with knees. The
third level maps these torques onto the control of the variable stiffness actuators. A low-level
controller switches between stiffness control in stance phase and motion control during swing.

A.6 Simulation Results

In this Section, numeric simulation results are presented that validate the control
strategy. For the simulations the robot model described in Section A.4 is used,
together with the complete control structure as outlined in Section A.5.

In Fig. A.6, the top plot shows the vertical position y of the hip during walking,
together with the reference y∗ obtained from the SLIP model. It can be seen
that in steady state conditions, the height of the robot deviates approximately a
centimeter from the reference of the conceptual SLIP model. The lower plot shows
the forward velocity ẋ of the hip, together with the reference ẋ∗. The spikes are
caused by the impact of the feet with the ground. It is observed that the velocity
is out of phase with the reference. This is due to the dynamics of the swing leg,
which need to be swung forward during the single support phase. The motion of
the inertia of the swing leg causes extra acceleration and deceleration of the hip.
Despite these deviations in hip height and velocity, a stable gait is obtained, as
shown in the movie attachment.

The hip and the knee motion during four steps are shown in Fig. A.7, to il-
lustrate the switching between VSA control and motion control. The hip angle
ϕ shows a smooth periodic motion, representing the hip swinging forward and
backward during subsequent steps. The motion of the knee angles is shown in the
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Figure A.6: Simulation results—The top plot shows the hip height y of the bipedal robot, along
with the reference y∗(x). The lower plot shows the forward velocity ẋ of the hip plotted, along
with the reference ẋ∗. It can be seen that a stable gait is attained.

bottom plot. During the swing phase the knee is controlled to an angle θ = 2.0 rad,
retracting the leg to avoid foot scuffing. Before ending the swing phase, the knee
angle is controlled to θ = 2.86 rad, extending the leg to its full length just before
impact. During the stance phase, the knee is passively compressed to an angle
θ ≈ 2.5 rad.

A.7 Experimental Results

The robot modeled in Section A.4.1 has been constructed, as shown in Fig. A.8.1

This Section presents an overview of the mechanical realization and preliminary
experimental results.

A.7.1 Mechanical Realization of the Robot

The robot features different properties which are required to match the original
V-SLIP model as close as possible. In the V-SLIP model, most of the total mass
of the robot is located close to the hip joint. To meet this requirement, the upper
and lower leg parts are made of light-weight carbon fiber tubes. Also the variable
stiffness actuators, which act on the knee joint, are situated close to the hip joint. A
light-weight transmission rod connects the output of the variable stiffness actuator
to the knee joint. The left and right leg are connected by an actuated hip joint.
In order to constrain the motion of the robot to the sagittal plane, a set of linear

1Details on the design can be found in Appendix B.
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Figure A.7: Hip and knee angles during simulation—The top plot shows the periodic hip motion,
and the bottom plot shows the knee angles for both the left and right leg.

guides is used, connected to the left leg via a passive joint. A treadmill is used as
walking surface.

The electronics is based on the micro-controller, providing the low-level I/O
with the motor drivers and sensors. The micro-controller communicates with a
PC, on which the control architecture is implemented in Simulink (The Mathworks
Inc., Natick, MA, USA) in real-time.

A.7.2 Preliminary Experimental Results

With the control architecture implemented, a preliminary experiment has been
performed, in which the robot has been able to walk approximately seven steps
autonomously. The results of these experiments are presented in this Section and
in the movie attachment.

Fig. A.9a shows the hip height y and the forward velocity of the hip ẋ (shown in
black), along with reference gait (shown in gray). It is observed that the hip height
trajectory show the correct periodic behavior, but the average height is decreasing
over time. From the forward velocity it is observed that the average velocity of the
hip stays in the same order of magnitude as the desired velocity.

Fig. A.9b shows the hip and the knee motion during the same steps as presented
in Fig. A.9a. The top plot shows the motion of the hip, which shows agreement
with the simulation results presented in Fig. A.7. The bottom plot shows the knee
angles trajectories: in gray for the left leg and in black for the right leg. The global
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Figure A.8: Photograph of the bipedal robot—The robot design corresponds to the model de-
scribed in Section A.4.1.

behavior of leg retraction during swing and passive compression during stance can
be observed.

A.8 Conclusions and Future Work

We presented a control strategy for a bipedal robot with variable stiffness actuators.
The different degrees of freedom of the robot are controlled at different levels of
abstraction. With this approach, the control problem remains tractable. The
effectiveness of the controller was demonstrated by simulations and preliminary
experiments.

A stable gait was attained in simulation, and it was shown in preliminary exper-
iments that the robot is capable of autonomous walking. However, this gait cannot
yet be sustained for longer periods of time, because, as observed in Fig. A.9a, the
robot is slowly losing height, ultimately leading to foot scuffing and tripping. An
improved robot model, capturing complex dynamics and nonlinear friction phenom-
ena that the current model does not yet include, and technological improvements
of the robot design, will address these issues.
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Figure A.9: Experimental results—On the left, the top plot shows the hip height y (black) during
seven succeeding stepst, and the reference trajectory (gray). The bottom plot shows the forward
velocity ẋ of the hip, and also the reference. On the right, he top plot shows the periodic hip
angle trajectory, and the lower plot shows the knee angle trajectories.





APPENDIX B

Description of the Robot Design

This appendix describes the design of the robot used in the experiments described
in Appendix A, summarizing the work presented in [12, 37]. The design require-
ments are reviewed, and an overview of the mechanical, electrical, and software
components of the robot is given.

B.1 Design Requirements

The purpose of the robot is to investigate the control strategies presented in Chap-
ter 5. Therefore, the robot design should incorporate the characteristic features of
the models that have been used in deriving the control strategies. In particular,
since the bipedal V-SLIP model, introduced in [69] and described in Section 5.2, is
at the basis of this line of research, the robot design should aim to resemble this
model as closely as possible.

The characteristic properties of the V-SLIP model are summarized as follows:

• point mass in the hip;

• massless telescopic springs, with variable stiffness, representing the legs;

• motion constrained to the sagittal plane.

The robot design should reproduce these properties as closely as possible, while
also be able to deal with the non-ideal properties of bipedal walking that are not
captured by the V-SLIP model. In the context of these considerations, the following
requirements for the robot design have been derived:

• the mass distribution of the robot should be such that most of the mass is
located close to the hip joint;
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Figure B.1: Conceptual leg design—By segmenting the leg, with a variable compliant element
in the connecting joint, a virtual telescopic spring element can be realized between the extremal
points of the leg.

• a passive compliance with variable stiffness must be implemented in such a
way that a (virtual) telescopic spring can be realized between the hip joint
and the foot of the leg;

• the motion of the robot must be constrained to the sagittal plane;

• an actuated degree of freedom in each leg to retract it during the swing phase,
with the aim of avoiding foot scuffing;

• an actuated hip joint to control the swing leg motion.

Based on these requirements, a concept has been designed based on segmented
legs with a variable compliant element connected to the knee joints, as shown
in Figure B.1. In this way, a virtual telescopic spring can be realized between
the hip and foot of the leg by appropriate stiffness variations at the output of the
actuator. Moreover, by controlling the equilibrium position of the joint, and setting
the output stiffness sufficiently high, motion control algorithms can be employed
to retract the leg during the swing phase.

B.2 Mechanical Realization

The concept has been realized as shown in Figure B.2. In view of the design
requirements, a number of characteristic features can be identified.

The robot essentially consists of two largely identical legs, connected by a hip
joint. The hip joint is actuated by a conventional DC-motor, so that the swing
motion of the legs can be accurately controlled. The legs are constructed from
carbon fibre material and aluminum parts, with the aim of keeping the weight low.
The legs are segmented by a knee joint, which is actuated by the vsaUT-II variable
stiffness actuator [26]. The variable stiffness actuator is placed close to the hip
joint, with the aim of approaching the ideal mass distribution of the V-SLIP model
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Figure B.2: Robot design and realization—On the left, a CAD drawing of the robot design is
shown. On the right, a photograph of the realized system.
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Figure B.3: Organization of robot electronics—The microcontroller orchestrates the coordination
between the various components. It acquires sensor data from the foot sensors and various
encoders, and receives setpoints for the motor and treadmill controllers.

as close as possible. The output of the actuator is connected to the knee joint by a
pulling rod, and thus controls the equilibrium angle of the knee joint and the joint
stiffness.

In order to constrain the motion of the robot to the sagittal plane, a set of guide
rails is employed. An attachment point, which is free to move in the sagittal plane
via the rails, is attached to the robot through a passive rotation joint, connected to
the robot in the rotation axis of the hip. In order to facilitate unrestricted forward
motion of the robot, a treadmill is used as a walking surface. By estimating the
forward velocity of the robot, the treadmill speed is matched to the robot speed.

B.3 Electronics and Software

The electronics of the robot are organized as depicted in Figure B.3. The central
component is an mbed prototyping board (ARM Ltd., Cambridge, UK), which
is based on the NXP LPC1768 Cortex-M3 microprocessor. The microcontroller
acquires sensor data from contact sensor in the foot and the various encoders of
the robot joints and motors. This sensory data is sent to the PC via USB, providing
the input to the control algorithm, described in Appendix A, which is implemented
on the PC in Simulink (The Mathworks Inc., Natick, MA, USA), running in real-
time. The motor setpoints, calculated by the control model, are sent back to the
microcontroller, which sends these to the motor controllers (Elmo Motion Control
Ltd., Petach-Tikva, Israel) and the treadmill speed controller.
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B.4 Recommendations for Improvements

While the robot has been shown to be capable of autonomous walking, it was found
that some aspects of the robot design need to be improved in order to be able to
achieve robust performance and sustained walking gaits.

• The original vsaUT-II design, as presented in [26] has been modified to better
meet the performance requirements of the robot. However, some performance
issues have been identified that should be addressed. In particular, the load
imposed by the robot during the stance phase induces significant friction in
the pivot point and the attachment points of the springs. This friction is
highly nonlinear and deteriorates the actuator performance in dynamically
changing the output stiffness.

• The control strategies presented in Chapter 5 rely on the availability of the
full state of the robot, as well as that of the abstracted models (e.g. the
V-SLIP model). In the current design, the joint angles are measured by
encoders, and the rate of change of these quantities is numerically computed.
The noise introduced by these computations has been shown problematic
in reconstructing the state variable measurements for the abstracted models.
The robot performance can likely be improved considerably by improved state
measurements and state reconstruction, in particular of the velocities.

• An important aspect any control strategy for a walking robot is determining
in which phase of the gait the robot is, i.e. the single support phase, double
support phase, etc. The current robot design employs simple pressure sensors
to determine which of the feet are in contact with the ground, and thus
determining the phase of the gait. However, these sensors are susceptible to
chattering due to the rigid contact of the feet with the ground. An improved
foot design and sensor could likely improve the robot performance by reducing
bouncing and slip of the feet.
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1. Actuatoren met variabele stijfheid kunnen het energieverbruik reduceren enkel
als het veranderen van de stijfheid slechts weinig energie kost. (Hoofdstuk 3)

2. Actuatoren met interne elastische elementen kunnen onbedoeld energie opslaan
die was bedoeld om arbeid mee te verrichten. (Hoofdstuk 3)

3. Periodieke bewegingen kunnen efficiënt aangestuurd worden door actuatoren
met interne elastische elementen, omdat negatieve arbeid kan worden omgezet
in herbruikbare elastische energie. (Hoofdstuk 4)

4. Tweebenige lopende robots kunnen significant profijt hebben van regelalgorit-
men gebaseerd op variabele beenstijfheid. (Hoofdstuk 5)

5. Wiskunde is een krachtig gereedschap; het is een middel om ingewikkelde proble-
men elegant te beschrijven, maar het is ook een middel om eenvoudige problemen
ingewikkeld te laten lijken.

6. Het nut van geautomatiseerde symbolische manipulatie van vergelijkingen kan
niet overschat worden.

7. Wiskundige details beschreven als “eenvoudig”, “een direct gevolg van het vooraf-
gaande”, of “een oefening voor de lezer” zijn vaak alleen eenvoudig, een direct
gevolg van het voorafgaande, of een eenvoudige oefening voor de auteur.

8. Wetenschappelijk onderzoek is als het verkennen van onbekende gebieden: je
komt interessante dingen tegen in alle richtingen, maar je moet altijd in gedachten
houden waar je in de eerste plaats naar op zoek was.

9. Het gros van des werelds problemen is het gevolg van het vermogen van de
mensheid zich sneller voor te planten dan de snelheid waarmee de mensheid de
samenleving kan reorganiseren om toenemende bevolkingsaantallen te onder-
houden.

10. De morgenstond heeft goud in de mond, maar een uurtje later beginnen kan
ook geen kwaad.
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1. Variable stiffness actuators can reduce energy consumption only if changing the
stiffness can be done in an energy-efficient way. (Chapter 3)

2. Actuators with internal elastic elements can unintentionally store energy that
was meant to do work. (Chapter 3)

3. Periodic motions can be efficiently realized by actuators with internal eleastic
elements, because negative work can be converted in reusable elastic energy.
(Chapter 4)

4. Bipedal walking robots can significantly benefit from control algorithms based
on variable leg stiffness. (Chapter 5)

5. Mathematics is a powerful tool; it provides a way to describe complicated prob-
lems elegantly, but it is also a way to obfuscate simple problems.

6. The benefits of automated symbolic manipulation of equations cannot be over-
estimated.

7. Mathematical details described as “easy”, “following directly from the preced-
ing”, or “left as an exercise for the reader” are often only easy, following directly
from the preceding, or an easy exercise for the author.

8. Research is like exploring uncharted areas: you see something interesting in
every direction, but you should keep in mind what your were looking for in the
first place.

9. The majority of the world’s problems are the result of the capability of mankind
to reproduce faster than the speed with which mankind can reorganize society
to accomodate growing population numbers.

10. The morning hour is golden, but starting a bit later does not hurt either.




